Antpedia LOGO WIKI资讯

电解水制氢中的非贵金属催化剂之金属氮化物

金属氮化物(TMNs)具有独特的物理和化学性质。一方面,氮原子的加入改变了母体金属d带的性质,导致金属d带的收缩,使得TMNs的电子结构更类似于贵金属(如Pd和Pt)。另一方面,氮由于原子半径小可以嵌套在晶格的间隙中,所以金属原子的排列总是保持紧密堆积或接近紧密堆积,赋予了TMNs较高的电子导电率。这些有前景的特性,再加上高抗腐蚀性,使这种材料相对于金属或金属合金更可靠。......阅读全文

POM电解液与二氧化钛催化剂作用来实现氮还原

  氮还原的产物在我们的生产和生活中起到了重大作用。其中,氨是全球产量第二大的化学品。它是合成农药、染料、爆炸物的重要原料。肼也是生产火箭燃料、发泡剂、农药和药品的必需品。为了替代高能耗和高成本的Habor-Bosch工业氮还原方法,常温常压电化学还原氮 (eNRR) 收到了学术界的广泛关注。新加坡

瑞士开发新型高效廉价电解水纳米催化剂

  利用太阳能和风能发电,并用所获得的电能通过电解水生产氢气,是重要的储存可再生能源的技术手段。目前使用的加速电解水反应的催化剂有两类,一种催化效率高但需要使用贵金属铱材料,致使价格昂贵,另一类价格较低但催化效率不高。  瑞士保罗谢尔研究所(PSI)最近成功开发出一种可用于电解水获取氢气的高效纳米催

科学家开发出高效电解水催化剂

  中科院化学所分子纳米结构与纳米技术重点实验室胡劲松课题组在氢能的清洁获取与应用方面开展了系列研究,并开发出新型高效电解水催化剂。相关成果日前发表于《美国化学会志》等杂志。  据了解,限制电解水制氢大规模应用的最重要瓶颈是如何大幅降低其电能消耗,从而大幅降低制氢成本。其关键是如何有效降低电极上析氧

瑞士开发新型高效廉价电解水纳米催化剂

   利用太阳能和风能发电,并用所获得的电能通过电解水生产氢气,是重要的储存可再生能源的技术手段。目前使用的加速电解水反应的催化剂有两类,一种催化效率高但需要使用贵金属铱材料,致使价格昂贵,另一类价格较低但催化效率不高。   瑞士保罗谢尔研究所(PSI)最近成功开发出一种可用于电解水获取氢气的高效纳

电解水制氢催化剂非贵金属介绍

  构建电催化剂的元素。根据其物理和化学性质,大致将这些元素分为三组:①贵金属铂(Pt)——目前常见的贵金属HER电催化剂;②用于构建非贵金属电催化剂的过渡金属元素,主要包括铁(Fe)、钴(Co)、镍(Ni)、铜(Cu)、钼(Mo)和钨(W);③用于构建非贵金属电催化剂的非金属元素,主要包括硼(B)

大连化物所实现利用铠甲催化剂去耦合电解水

  近日,中国科学院大连化学物理研究所催化基础国家重点实验室二维材料与能源小分子转化创新特区研究组(05T6组)研究员邓德会团队以铠甲催化剂为电极,构建出高效稳定的电解水解耦装置。该研究工作为电力削峰填谷策略提供了新思路。  解耦电解水是一种具有潜力的削峰填谷策略,可以将用电低谷期的过剩电力利用起来

化学所开发出新型高效电解水催化剂

  氢能是一种理想的能源载体,开发大规模、廉价、清洁、高效的制氢技术是氢能有效利用的关键。电解水由于环境友好、产品纯度高以及无碳排放而成为具有应用前景的绿色制氢方法之一。限制电解水制氢大规模应用的最重要瓶颈是如何大幅降低其电能消耗,因而大幅降低制氢成本。其关键是如何有效降低电极上析氧反应(OER)和

氮气发生器-电解法制氮法

电解法制氮使用电解法制氮原理的氮气发生器,其主要特点就是仪器具有电解液储液桶。其主要原理是:原料空气进入到电解池中,空气中的氧在阴极被附而获得电子,与水作用生成氢氧根离子并迁移到阳极,最后在阳极处失去电子析出氧气,因此空气中的氧不断被分离,只留下氮气随气路被输出。一般而言,加KOH液体(水)的电解法

电解水制氢有了长寿命廉价催化剂

  中国科学院大连化学物理研究所韩洪宪研究员和李灿院士团队与日本理化学研究所合作,研发出一种可在强酸条件下长寿命电催化分解水的廉价电催化剂,并有望在大规模可再生能源制氢技术中应用。相关研究成果日前发表在《德国应用化学》上。  将太阳能转化为俗称“液态阳光”的“太阳燃料”,是应对未来化石燃料枯竭和气候