TonyBosley加入牛津仪器

牛津仪器磁共振,智能台式核磁共振(NMR)的领先供应商,宣布Tony Bosley已任职该公司总经理。托尼在国际科学仪器领域具有可溯的优秀记录,并将工作在牛津仪器的Tubney Woods,牛津仪器Oxfordshire的工厂。 托尼加入牛津仪器前来自E2V科学仪器有限公司,该公司专门设计、开发和生产用于材料分析应用的固态高分辨率X射线探测器。托尼担任该公司董事总经理十多年,之前曾担任该公司的销售总监,E2V原名为Gresham Scientific。 “Tony Bosley加入牛津仪器将带来业绩增长和持续利润的丰富经验。我们很高兴欢迎托尼加入团队,并祝愿他在他的新任总经理位置的每一个成功。”集团业务发展总监Charles Holroyd说。 在E2V科学仪器任职之前,托尼在AEA Harwell的机械工程开始他的学徒生涯,之后任职于Rutherford Appleton实验室激光......阅读全文

核磁共振碳谱实验

实验方法原理2.去偶技术:为了简化核磁共振的谱图,把核与核之间直接、间接相互作用去掉所采取的技术。13C NMR 谱多采用宽带去偶(BB 去偶),也叫质子噪声全去偶。13C NMRBB 去偶可以是谱图简化,使交迭的偶合的多重峰,间并为单峰。每个峰代表一种类型的碳。同时,去偶可增强信噪比,多重峰的合并

核磁共振氢谱解析

化学环境这里指化合物中氢原子核外的电子分布情况、与该氢核邻近的其他原子和成键电子的分布情况及其对该氢核的影响。化学环境不同的氢核(也就是结构环境不同的质子),其核磁共振谱图中的化学位移不同。(1)由信号峰的组数可以推知有机物分子中含有几种类型的氢(2)由各信号峰的强度(峰面积或积分曲线高度)比可以推

核磁共振谱的应用

  核磁共振技术在有机合成中,不仅可对反应物或产物进行结构解析和构型确定,在研究合成反应中的电荷分布及其定位效应、探讨反应机理等方面也有着广泛应用。核磁共振波谱能够精细地表征出各个氢核或碳核的电荷分布状况,通过研究配合物中金属离子与配体的相互作用,从微观层次上阐明配合物的性质与结构的关系,对有机合成

核磁共振的优缺点

核磁共振的优点:1、由于核磁共振是磁场成像,没有放射性,所以对人体无害,是非常安全的。据了解,世界上既没有任何关于使用核磁共振检查引起危害的报道,也没有发现患者因进行核磁共振检查引起基因突变或染色体畸变发生率增高的现象。2、核磁共振对颅脑、脊髓等疾病是最有效的影像诊断方法,不仅可以早期发现肿瘤、脑梗

如何看核磁共振谱

核磁共振(NMR,Nuclear Magnetic Resonance)是基于原子尺度的量子磁物理性质。具有奇数质子或中子的核子,具有内在的性质:核自旋,自旋角动量。核自旋产生磁矩。NMR观测原子的方法,是将样品置于外加强大的磁场下,现代的仪器通常采用低温超导磁铁。核自旋本身的磁场,在外加磁场下重新

核磁共振谱的简介

  核磁共振技术是有机物结构测定的有力手段,不破坏样品,是一种无损检测技术。从连续波核磁共振波谱发展为脉冲傅立叶变换波谱,从传统一维谱到多维谱,技术不断发展,应用领域也越广泛。核磁共振技术在有机分子结构测定中扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”

磁共振的发展简史介绍

  磁共振是在固体微观量子理论和无线电微波电子学技术发展的基础上被发现的。1945年首先在顺磁性Mn盐的水溶液中观测到顺磁共振,第二年,又分别用吸收和感应的方法发现了石蜡和水中质子的核磁共振;用波导谐振腔方法发现了Fe、Co和Ni薄片的铁磁共振。1950年在室温附近观测到固体Cr2O3的反铁磁共振。

磁共振成像的发展历程

1978 年底,第一套磁共振系统在位于德国埃尔兰根的西门子研究基地的一个小木屋中诞生。 1979 年底,当系统终于可以工作时,它的第一件作品是辣椒的图像。第一张人脑影像于 1980年 3 月获得,当时的数据采集时间为 8 分钟。  1983 年,西门子在德国汉诺威医学院成功安装了第一台临床磁共振成像

低场核磁共振仪

  低场核磁共振仪是一种用于能源科学技术领域的电子测量仪器,于2016年12月9日启用。  技术指标  磁体类型:永磁体;磁场强度: 0.5T±0.05 T; 磁场均匀度:≤50ppm(Ø60mm球体); 磁场稳定性:≤300Hz/Hour; 磁体温度:非线性精准恒温控制,25~35℃范围内可调,控

核磁共振的成像原理

核磁共振成像原理原子核自旋,有角动量。由于核带电荷,它们的自旋就产生磁矩。当原子核置于静磁场中,本来是随机取向的双极磁体受磁场力的作用,与磁场作同一取向。以质子即氢的主要同位素为例,它只能有两种基本状态:取向“平行”和“反向平行”,他们分别对应于低能和高能状态。精确分析证明,自旋并不完全与磁场趋向一

核磁共振法的概念

通过核磁共振光谱特性如化学迁移、耦合常数、多重性、吸收峰的宽度和强度以及温度效应,来测定样品的分子结构,特别是有机化合物的分子结构。

核磁共振谱的原理

  根据量子力学原理,与电子一样,原子核也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数I决定,原子核的自旋量子数I由如下法则确定:  1)中子数和质子数均为偶数的原子核,自旋量子数为0;  2)中子数加质子数为奇数的原子核,自旋量子数为半整数(如,1/2, 3/2, 5/2);  3)

磁共振增强扫描的简介

  磁共振增强扫描是是经静脉注射某种造影药物后再作一次CT或MR扫描。造影剂注入静脉后随血液分布到人体各正常或异常组织,各种组织的血液供应量和供应来源不一样,因而造影剂的分布量、分布时间及清除速度有差别。因CT造影剂含高密度物质碘,分布造影剂多的组织密度增加就多。MR造影剂含顺磁性物质钆,能使组织T

核磁共振谱的简介

  核磁共振技术是有机物结构测定的有力手段,不破坏样品,是一种无损检测技术。从连续波核磁共振波谱发展为脉冲傅立叶变换波谱,从传统一维谱到多维谱,技术不断发展,应用领域也越广泛。核磁共振技术在有机分子结构测定中扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”

磁共振成像的其他进展

    核磁共振分析技术是通过核磁共振谱线特征参数(如谱线宽度、谱线轮廓形状、谱线面积、谱线位置等)的测定来分析物质的分子结构与性质。它可以不破坏被测样品的内部结构,是一种完全无损的检测方法。同时,它具有非常高的分辨本领和精确度,而且可以用于测量的核也比较多,所有这些都优于其它测量方法。因此,核磁共

磁共振成像的发展历程

1978 年底,第一套磁共振系统在位于德国埃尔兰根的西门子研究基地的一个小木屋中诞生。 1979 年底,当系统终于可以工作时,它的第一件作品是辣椒的图像。第一张人脑影像于 1980年 3 月获得,当时的数据采集时间为 8 分钟。  1983 年,西门子在德国汉诺威医学院成功安装了第一台临床磁共振成像

磁共振的实验方法

通常,当外加恒定磁场Be在0.1~1.0T(材料的内磁场BBe)时,各种与电子有关的磁共振频率都在微波频段,而核磁共振频率则在射频频段。这是因为原子核质量与电子质量之比至少1836倍的缘故。虽然观测这两类磁共振分别应用微波技术和无线电射频技术,但其实验装置的组成与测量原理却是类似的。磁共振实验装置由

快速磁共振成像技术问世

  为了能够进行慢速扫描,医生们一直在和那些不停扭动的儿童作斗争。   如今,幸亏更快速的磁共振成像(MRI)技术的研制成功,他们可能再也不用焦虑如何让自己的病人保持长时间的静止了。   图中所展示的对一名6岁先天性心脏病患者的心脏血流情况进行的成像仅需要10分钟,而非传统MRI

核磁共振成像特点

一、无损伤性检查。CT、X线、核医学等检查,病人都要受到电离辐射的危害,而MRI投入临床20多年来,已证实对人体没有明确损害。孕妇可以进行MRI检查而不能进行CT检查。二、多种图像类型。CT、X线只有一种图像类型,即X线吸收率成像。而MRI常用的图像类型就有近10种,且理论上有无限多种图像类型。通过

核磁共振如何产生峰

1、 了解核磁共振的基本原理和表征核磁共振氢谱的基本参数及其解析方法。2、 掌握高分辨率核磁共振仪的操作方法,注重独立完成实验能力的培养。二、引 言核磁共振现象最早是在1946年由美国斯坦福大学的Bloch和哈佛大学的Purcell发现的,他们因此而获得了1952年度的诺贝尔奖金。具有磁矩的原子核位

核磁共振的偶合常数

自旋偶合的量度称为自旋的偶合常数(coupling constant),用符号J表示,J值的大小表示 了偶合作用的强弱J的左上方常标以数字,它表示两个偶合核之间相隔键的数目,J的右下方 则标以其它信息。就其本质来看,偶合常数是质子自旋 裂分时的两个核磁共振能之差,它可以通过共振吸收的位置差别来体现,

磁共振设备的保养方案

核磁共振设备是十分贵重的影像设备,为了减少故障率,提高使用寿命,核磁共振设备的保养就显得十分重要,下面我们对核磁共振设备的日常维护保养分三部分进行,下面就分别介绍。电源分配柜、射频柜、系统柜这三部分的后盖上都有许多金属滤网,能对进入设备内部的空气起到一定的净化作用。尤其是电源分配柜,它是给MR除冷头

核磁共振波谱仪的应用方向

作为测定原子的核磁距和研究核结构的直接而又准确的方法,核磁共振波谱仪是物理学,化学,生物学的研究中的一种重要而强大的实验手段,也是许多应用科学,如医学,遗传学,计量科学,石油分析等学科的重要研究工具。以下是核磁共振波谱仪的一些基本应用:l子结构的测定l化学位移各向异性的研究l金属离子同位素的应用l动

新型的硅深刻蚀技术

  牛津仪器发布了名为PlasmaPro® Estrelas100的硅深刻蚀技术,该技术提供了工业级的领先工艺性能,可以为微机电系统(MEMS)市场提供极为灵活的解决方案。   考虑到研发领域的需要,PlasmaPro® Estrelas100提供了极致的工艺灵活性。因为硬件的设计考虑到了

牛津仪器为Natre-Dame大学提供等离子体设备

  为进一步的扩大和促进研究能力,美国中西部纳米电子研发中心(MIND)采购了牛津仪器公司等离子技术部的等离子蚀刻和沉积两套设备。该FlexALâ原子沉积(ALD)和System100 ICP等离子蚀刻设备将安装在Notre Dame的纳米加工设施里,位于美国印第安纳州Notre Dame大

核磁共振波谱仪核磁共振谱仪的性能指标分析

一、分辨率分辨率系指仪器分辨相邻谱线的能力。分辨率越高,谱线越窄,能被分开的两峰间距就越小。一般选用乙醇作标准品,测试仪器分辨率。乙醇的—CHO是一组四重峰,取其高峰的半高宽作为分辨率的指标,如图一所示。一般一起的分辨率在0.1-0.4Hz。图一   乙醇的醛基四重峰二、灵敏度灵敏度又称信噪比,是衡

核磁共振碳谱图和核磁共振氢谱图有何差别

根据氢谱和碳谱,联合得出,你的样品是混合物。你的碳谱,把49ppm的峰当作溶剂峰,另外能够测得37个碳,有3个可能是羰基C=O,芳香碳可能有8个,取代碳(碳上直接连O,N等)可能有3个,饱和碳可能有16个。但氢谱,第一,对应于峰的面积不是严格成比例,第二,与饱和碳、不饱和碳的构成分子结构,不能合拍。

牛津仪器与著名的台湾工业技术研究院合作

  牛津仪器公司和台湾工业技术研究院很高兴地宣布刚刚签署的项目研究合作协议。该协议是基于牛津仪器公司向工业技术研究院提供一个HBLED相关程序研究中心,并配备自己的程序工程师。这将让工业技术研究院和牛津仪器在远东地区的广大客户受益。工业技术研究院是一个跨多个工业技术领域的应用研究机构,自1973年成

牛津仪器推出新款X射线荧光分析仪XMET7500

  牛津仪器公司自豪地推出手持X射线荧光分析仪X-MET7000系列的新成员X-MET7500。这款X-MET7500能够快速精确地分析不同材料,包括痕量元素和轻元素(从镁开始)分析,不需要氦清除或真空泵。   这是一款理想的筛选工具:   金属工业:材料可靠性鉴定 金属回收;废旧金属分拣 金和

新一代HBLED批量生产设备

  牛津等离子部生产出PlasmaProTM NGP®1000 HBLED等离子体刻蚀和沉积设备,为HBLED制造业带来极大的好处。业界领先的大规模生产能力生产从61 x 2"到 7 x 6"尺寸的晶片以高品质的设备性能和产量相结合,意味着牛津仪器能够为客户提供一种特殊的HBLED生产。  NGP1