核磁共振碳谱实验

实验方法原理2.去偶技术:为了简化核磁共振的谱图,把核与核之间直接、间接相互作用去掉所采取的技术。13C NMR 谱多采用宽带去偶(BB 去偶),也叫质子噪声全去偶。13C NMRBB 去偶可以是谱图简化,使交迭的偶合的多重峰,间并为单峰。每个峰代表一种类型的碳。同时,去偶可增强信噪比,多重峰的合并使信号增强,一般信号增强 1-2 倍。4、核的欧沃豪斯(NOE)效应这个现象是 Overhauser 于 1953 年在电子自旋和核自旋的样品中首先发现的。去偶可使信号增强的效应叫欧沃豪斯(NOE)效应。使信号增强的倍数叫 NOE 因子。在一个样品体系的不同的基团中,各个核的 NOE 效应是不同的,既 NOE 因子不同,故各个峰增强的倍数并不相等,因此,在 BB 碳谱实验中,碳数相同的峰的高度并不相同。亦既,碳谱 NMR 实验中峰的强度并没有严格的定量关系的存在。仪器、耗材AV-500CDCL3乙基苯正辛醇核磁共振的样品管是专用样品管......阅读全文

核磁共振碳谱实验

实验方法原理2.去偶技术:为了简化核磁共振的谱图,把核与核之间直接、间接相互作用去掉所采取的技术。13C NMR 谱多采用宽带去偶(BB 去偶),也叫质子噪声全去偶。13C NMRBB 去偶可以是谱图简化,使交迭的偶合的多重峰,间并为单峰。每个峰代表一种类型的碳。同时,去偶可增强信噪比,多重峰的合并

现在核磁共振碳谱-氢谱-样品需要多少

氢谱的话,分子量比较小的,十多毫克就可以。如果分子量大,那么相同质量下的摩尔数更小,所以要多用一些样品,一般30-50毫克。如果样品不够的话,可以让做核磁的人帮你多扫几次。氢谱一般扫8次足够,如果你信噪比不行,可以扫个32次或者64次。碳谱完全取决于你想扫多少次,一般100毫克起吧,样品量不够需要过

核磁共振碳谱图和核磁共振氢谱图有何差别

根据氢谱和碳谱,联合得出,你的样品是混合物。你的碳谱,把49ppm的峰当作溶剂峰,另外能够测得37个碳,有3个可能是羰基C=O,芳香碳可能有8个,取代碳(碳上直接连O,N等)可能有3个,饱和碳可能有16个。但氢谱,第一,对应于峰的面积不是严格成比例,第二,与饱和碳、不饱和碳的构成分子结构,不能合拍。

核磁共振碳谱的特点和优点

 核磁共振氢谱的主要参数有化学位移、峰的裂分和耦合常数,、峰面积,这些参数都在核磁共振氢谱中反映出来,但核磁共振碳谱的外观和氢谱有很大的差别。  核磁共振碳谱测定的是13C核,其同位素丰度只有大约1%,因此在碳谱中看不到碳碳之间的耦合裂分。再者,由于在测定碳谱时进行对氢的去耦,碳谱中没有相连的氢原子

核磁共振碳谱的特点和优点

核磁共振氢谱的主要参数有化学位移、峰的裂分和耦合常数,、峰面积,这些参数都在核磁共振氢谱中反映出来,但核磁共振碳谱的外观和氢谱有很大的差别。  核磁共振碳谱测定的是13C核,其同位素丰度只有大约1%,因此在碳谱中看不到碳碳之间的耦合裂分。再者,由于在测定碳谱时进行对氢的去耦,碳谱中没有相连的氢原子而

核磁共振氢谱实验

实验方法原理1、核磁共振的概念具有磁性的原子核,处在某个外加静磁场中,受到特定频率的电磁波的作用,在它的磁能级之间发生的共振跃迁现象,叫核磁共振现象。2、核磁共振的共振条件①:具有磁性的原子核。(γ:某种核的磁旋比)②:外加静磁场(H0)中)。③:一定频率(υ)的射频脉冲。④:公式: 3、 化学位移

影响碳的核磁共振谱和质子核磁共振谱化学位移因素

化学位移是由屏蔽作用所引起的共振时磁场强度的移动现象.所以位移的大小与氢核(或碳核)所处的化学环境有关.影响氢核的位移因素有:1、电负性.与质子连接的原子电负性越大,质子信号就在越低的磁场出现2、磁各向异性效应.分子中之子与某一官能团的关系会影响质子的化学位移,可以是反磁屏蔽,可以是顺磁屏蔽,情况比

实验室分析仪器核磁共振碳谱的特点

1、灵敏度低由于γc= γH /4,且13C的天然丰度只有1.1%,因此13C核的测定灵敏度很低,大约是H核的1/6000,测定困难。2、 分辨能力高氢谱的化学位移δ值很少超过10ppm,而碳谱的δ值可以超过200ppm,最高可达600ppm。这样,复杂和分子量高达400的有机物分子结构的精细变化都

核磁共振氢谱实验(二)

点击: (or 键入指令 ↙)观察采样通道和氘锁通道,出现下图 2.3:图 2.3 观察采样通道和氘锁通道④:锁场点击: (or 键入指令 LOCK↙)锁定磁场,出现下图 2.4:图 2.4 溶剂选取对话框。选取 CDCL3(氘代氯仿)点击 OK。仪谱进行自动匀场。⑤: 探头调谐 注意事项

核磁共振氢谱实验(一)

实验方法原理 1、核磁共振的概念具有磁性的原子核,处在某个外加静磁场中,受到特定频率的电磁波的作用,在它的磁能级之间发生的共振跃迁现象,叫核磁共振现象。2、核磁共振的共振条件①:具有磁性的原子核。(γ:某种核的磁旋比)②:外加静磁场(H0)中)。③:一定频率(υ)的射频脉冲。④:公式: 3、 化学位

实验室分析仪器核磁共振碳谱的解析步骤

13C NMR解析步骤:1、确定分子式,计算不饱和度;2、排除溶剂峰及杂质峰;3、判断分子结构的对称性;4、判断C原子结构以及级数; 5、确定C核和H核的对应关系;6、提出结构单元并给出结构式; 7、排除不合理的结构;8、与标准波谱图谱进行比对。

实验室分析仪器核磁共振碳谱的测定方法

1、 脉冲傅里叶变换法脉冲傅立叶变换法(Pulse Fourier Transform,简称PFT法)是利用短的射频脉冲方式的射频波照射样品,并同时激发所有的13C核。由于激发产生了各种13C核所引起的不同频率成分的吸收,并被接收器所检测。2、 核磁共振碳谱中的几种去偶技术13C核的天然丰度很低,分

实验室分析仪器核磁共振碳谱自旋晶格弛豫时间(T1)

磁共振成像时,对置于外磁场BO中的自旋系统施加射频脉冲,则自旋系统被激励,其净磁化矢量指向偏转,不再与外磁场BO方向平行(如与BO垂直)。射频脉冲终止后,被激励的质子与周围环境(晶格)之间发生能量交换,把能量传递给周围的晶格,同时其净磁化矢量指向逐渐恢复与外磁场方向平行。该过程在自旋与晶格之间有能量

核磁共振谱仪核磁共振谱仪的组成部分

通常是用电磁铁和永久磁铁产生均匀而稳定的磁场B。在两磁极之间安装一个探头,探头中央插入试样管。试样管在压缩空气的推动下,匀速而平稳地回旋。射频振荡器线圈安装在探头中,产生一定频率的射频辐射以激发核。它所产生的射频场必须与磁场方向垂直。射频接收线圈也安装在探头中,以来探测核磁共振时的吸收信号。另有一组

核磁共振谱的简史

  核磁共振现象于1946年由E.M.珀塞耳和F.布洛赫等人发现。目前核磁共振迅速发展成为测定有机化合物结构的有力工具。目前核磁共振与其他仪器配合,已鉴定了十几万种化合物。70年代以来,使用强磁场超导核磁共振仪,大大提高了仪器灵敏度,在生物学领域的应用迅速扩展。脉冲傅里叶变换核磁共振仪使得13C、1

核磁共振谱怎么分析

核磁共振用NMR(Nuclear Magnetic Resonance)为代号。1.原子核的自旋核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况,见表8-1。I为零的原子

核磁共振谱图解析

这个是个掉书袋的工作啊,难度不大,但是内容很多。至少需要掌握官能团对化学位移的影响和解耦合现象。通过化学位移解析官能团,通过耦合产生的能级裂分推断结构中各原子之间的连接关系。这个可以一门学分至少2的课。一时半会说不清啊。chemoffice可以模拟核磁谱,如果你只是为了论文作图,不妨试试看。想了解的

核磁共振氢谱解析

化学环境这里指化合物中氢原子核外的电子分布情况、与该氢核邻近的其他原子和成键电子的分布情况及其对该氢核的影响。化学环境不同的氢核(也就是结构环境不同的质子),其核磁共振谱图中的化学位移不同。(1)由信号峰的组数可以推知有机物分子中含有几种类型的氢(2)由各信号峰的强度(峰面积或积分曲线高度)比可以推

如何看核磁共振谱

核磁共振(NMR,Nuclear Magnetic Resonance)是基于原子尺度的量子磁物理性质。具有奇数质子或中子的核子,具有内在的性质:核自旋,自旋角动量。核自旋产生磁矩。NMR观测原子的方法,是将样品置于外加强大的磁场下,现代的仪器通常采用低温超导磁铁。核自旋本身的磁场,在外加磁场下重新

核磁共振谱的简介

  核磁共振技术是有机物结构测定的有力手段,不破坏样品,是一种无损检测技术。从连续波核磁共振波谱发展为脉冲傅立叶变换波谱,从传统一维谱到多维谱,技术不断发展,应用领域也越广泛。核磁共振技术在有机分子结构测定中扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”

核磁共振谱的应用

  核磁共振技术在有机合成中,不仅可对反应物或产物进行结构解析和构型确定,在研究合成反应中的电荷分布及其定位效应、探讨反应机理等方面也有着广泛应用。核磁共振波谱能够精细地表征出各个氢核或碳核的电荷分布状况,通过研究配合物中金属离子与配体的相互作用,从微观层次上阐明配合物的性质与结构的关系,对有机合成

核磁共振谱的原理

  根据量子力学原理,与电子一样,原子核也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数I决定,原子核的自旋量子数I由如下法则确定:  1)中子数和质子数均为偶数的原子核,自旋量子数为0;  2)中子数加质子数为奇数的原子核,自旋量子数为半整数(如,1/2, 3/2, 5/2);  3)

核磁共振谱的简介

  核磁共振技术是有机物结构测定的有力手段,不破坏样品,是一种无损检测技术。从连续波核磁共振波谱发展为脉冲傅立叶变换波谱,从传统一维谱到多维谱,技术不断发展,应用领域也越广泛。核磁共振技术在有机分子结构测定中扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”

核磁共振谱怎么分析

之间的能量差为△E。一个核要从低能态跃迁到高能态,必须吸收△E的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振,简称NMR。目前研究得最多的是1H的核磁共振,13C的核磁共振近

核磁共振波谱仪核磁共振谱仪定义

核磁共振(nuclear magnetic resonance, NMR)是磁矩不为零的原子核,在外磁场作用自旋能级发生蔡曼分裂,共振吸收某一定频率的射频辐射的物理过程。并不是是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋。原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进

实验室分析仪器-核磁共振氢谱实验原理

1、核磁共振的概念具有磁性的原子核,处在某个外加静磁场中,受到特定频率的电磁波的作用,在它的磁能级之间发生的共振跃迁现象,叫核磁共振现象。2、核磁共振的共振条件①:具有磁性的原子核。(γ:某种核的磁旋比)②:外加静磁场(H0)中)。③:一定频率(υ)的射频脉冲。④:公式: 3、 化学位移的概念及产生

关于核磁共振谱的分类

  有两大类:高分辨核磁共振谱仪和宽谱线核磁共振谱仪。高分辨核磁共振谱仪只能测液体样品,谱线宽度可小于1赫,主要用于有机分析。宽谱线核磁共振谱仪可直接测量固体样品,谱线宽度达10赫,在物理学领域用得较多。高分辨核磁共振谱仪使用普遍,通常所说的核磁共振谱仪即指高分辨谱仪。  按谱仪的工作方式可分连续波

核磁共振谱的原理简介

  根据量子力学原理,与电子一样,原子核也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数I决定,原子核的自旋量子数I由如下法则确定:  1)中子数和质子数均为偶数的原子核,自旋量子数为0;  2)中子数加质子数为奇数的原子核,自旋量子数为半整数(如,1/2, 3/2, 5/2);  3)

碳谱的作用

碳谱是用来测碳的。碳谱能直接测定碳原子的类型和相对个数。而氢谱对碳链的信息是由与碳相连的氢推测出来的。碳谱提供碳原子的信息,比如连接官能团情况,碳的个数,取代方式(CH2,CH,CH3)等,与氢谱相比,最明显的不同就是出峰像一条线,而且不用积分。相关信息介绍:根据碳峰强度可以分类:d、e、k、l各峰

核磁共振波谱仪核磁共振谱仪发展现状

二十世纪后半叶,NMR技术和仪器发展十分快速,从永磁到超导,从60MHz到800MHz的NMR谱仪磁体的磁场差不多每五年提高一点五倍,这是被NMR在有机结构分析和医疗诊断上特有功能所促进的。现在有机化学研究中NMR已经成为分析常规测试手段,同样,在医疗上MRI(核磁共振成像仪器)亦成为某些疾病的诊断