水生所鱼类模式识别受体抗病毒感染机制研究取得进展

RIG-I样受体(RIG-I like receptors,RLRs)是一类新发现的模式识别受体,能够识别细胞质中的病毒RNA,在抗病毒天然免疫中起着重要的作用。RIG-I样受体包括3个成员, 即视黄酸诱导基因I (RIG-I)、黑色素瘤分化相关基因5 (MDA5)以及LGP2。在哺乳动物中,LGP2在RIG-I/MDA5介导的信号通路中起着负调控作用;然而也有研究表明LGP2作为RIG-I/MDA5信号通路的上游信号在抗病毒感染中起着正调控的作用。 在中国科学院水生生物研究所鱼类免疫学与寄生虫学学科组和苏格兰鱼类免疫研究中心的合作研究中,昌鸣先等揭示了RIG-I样受体MDA5和LGP2在低等脊椎动物中的功能。与哺乳动物MDA5和LGP2相同,鱼类的MDA5和LGP2也能结合病毒双链RNA成分。然而与哺乳类的LGP2调控MDA5信号通路的功能不同,鱼类MDA5和LGP2的过表达均能增强细胞对病毒的感染;过......阅读全文

我科学家发现抗病毒信号新通路

  记者从中国科技大学获悉,该校生命科学学院及中科院天然免疫与慢性疾病重点实验室周荣斌研究组、田志刚研究组与厦门大学韩家淮研究组合作,首次发现坏死小体蛋白复合物RIP1-RIP3及其下游信号通路在RNA病毒感染诱导的炎性小体形成中起关键作用,从而发现一条新的天然免疫抗病毒信号通路。国际权威免疫学杂志

RTKs介导的信号通路及其基本模式

受体酪氨酸激酶在没有同信号分子结合时是以单体存在的,并且没有活性;一旦有信号分子与受体的细胞外结构域结合,两个单体受体分子在膜上形成二聚体,两个受体的细胞内结构域的尾部相互接触,激活它们的蛋白激酶的功能,结果使尾部的酪氨酸残基磷酸化。磷酸化导致受体细胞内结构域的尾部装配成一个信号复合物(signal

简述RTKs介导的信号通路及其基本模式

  受体酪氨酸激酶在没有同信号分子结合时是以单体存在的,并且没有活性;一旦有信号分子与受体的细胞外结构域结合,两个单体受体分子在膜上形成二聚体,两个受体的细胞内结构域的尾部相互接触,激活它们的蛋白激酶的功能,结果使尾部的酪氨酸残基磷酸化。磷酸化导致受体细胞内结构域的尾部装配成一个信号复合物(sign

水生所鱼类模式识别受体抗病毒感染机制研究取得进展

  RIG-I样受体(RIG-I like receptors,RLRs)是一类新发现的模式识别受体,能够识别细胞质中的病毒RNA,在抗病毒天然免疫中起着重要的作用。RIG-I样受体包括3个成员, 即视黄酸诱导基因I (RIG-I)、黑色素瘤分化相关基因5 (MDA5)以及LGP2。在

丝裂原活化蛋白激酶的相关信号通路模式与功能

很多刺激,如生长因子、细胞因子、射线、渗透压以及体液流过细胞表面时产生的切应力等因素都可以激活MAPK信号转导通路。模式图如右图所示。MAPK级联激活是多种信号通路的中心,是接收膜受体转换与传递的信号并将其带入细胞核内的一类重要分子,在许多细胞增殖相关信号通路中具有关键作用。在未受刺激的细胞内,MA

中国科技大学等联合发现抗病毒信号新通路

  记者从中国科技大学获悉,该校生命科学学院及中科院天然免疫与慢性疾病重点实验室周荣斌研究组、田志刚研究组与厦门大学韩家淮研究组合作,首次发现坏死小体蛋白复合物RIP1-RIP3及其下游信号通路在RNA病毒感染诱导的炎性小体形成中起关键作用,从而发现一条新的天然免疫抗病毒信号通路。国际权威免疫学杂志

我国揭示硬骨鱼RLRs和NLRs受体信号上基因剪接和免疫功能

  先天免疫是机体抵御病原微生物感染的第一道防线,它主要是通过在进化上高度保守的一系列模式识别受体来识别微生物表面保守的、而又在宿主中不存在的病原相关分子模式来发挥作用。RLRs受体和NLRs受体家族是脊椎动物两类重要的胞内模式识别受体。中国科学院水生生物研究所昌鸣先研究员学科组对硬骨鱼类的这两类模

我国研究团队揭示鱼类调控抗病毒天然免疫反应的机制

  鱼类病毒病的爆发与流行是水产养殖尤其是集约化养殖的重要威胁。与哺乳动物类似,鱼类抗病毒感染主要通过天然免疫反应系统和获得性免疫反应系统来行使功能。天然免疫反应系统是在生物体演化出来的、对抗病原体感染的古老防御系统,从低等的无脊椎动物到人类都得到高度发展,是生物体抗病毒感染的第一道重要防线。但是,

PLoS-Pathog:抗病毒天然免疫信号通路中TBK1的活化机制

  天然免疫是宿主抵抗病原入侵的第一道防线。在抗病毒天然免疫反应中,机体通过RLR-MAVS和cGAS-STING信号通路分别感受RNA病毒和DNA病毒的入侵并通过活化转录因子IRF3和NFκB,启动包含I型干扰素(IFN)在内的众多抗病毒细胞因子的产生……  国际著名免疫学术期刊PLOS Path

上海生科院揭示RIGIMAVS抗病毒信号通路调控新机制

  10月18日,国际学术期刊The EMBO Journal 在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所周兆才研究组与黄超兰研究组合作的最新研究成果——A Non-canonical Role of the p97 Complex in RIG-I Antiviral Sig

Notch信号通路的通路组成介绍

Notch基因编码一种膜蛋白受体,由Notch受体、Notch配体(DSL蛋白)及细胞内效应器分子(CSL-DNA结合 蛋白)三部分组成。(1)Notch受体:分别为Notch 1.2.3.4种;其结构:胞外区(NEC)、跨膜区(TM)和胞内区(NICD/ICN)三部分;胞外区(NEC):其结构域包

信号通路的分类

一是当信号分子是胆固醇等脂质时,它们可以轻易穿过细胞膜,在细胞质内与目的受体相结合;二是当信号分子是多肽时,它们只能与细胞膜上的蛋白质等受体结合,这些受体大都是跨膜蛋白,通过构象变化,将信号从膜外domain传到膜内的domain,然后再与下一级别受体作用,通过磷酸化等修饰化激活下一级别通路。

Hippo信号通路概述

Hippo 信号通路,也称为Salvador / Warts / Hippo(SWH)通路,命名主要源于果蝇中的蛋白激酶Hippo(Hpo),是通路中的关键调控因子。该通路由一系列保守激酶组成,主要是通过调控细胞增殖和凋亡来控制器官大小。Hippo信号通路是一条抑制细胞生长的通路。哺乳动物中,Hip

mTOR信号通路图

mTOR可对细胞外包括生长因子、胰岛素、营养素、氨基酸、葡萄糖等多种刺激产生应答。它主要通过PI3K/Akt/mTOR途径来实现对细胞生长、细胞周期等多种生理功能的调控作用。正常情况下,结节性脑硬化复合物-1(TSC-1)和TSC-2形成二聚体复合物,是小GTP酶Rheb(Ras-homolog

信号通路的概念

信号通路,信号转导,signal pathway狭义能够把胞外的分子信号经过细胞膜传到细胞胞内然后发生效应的一系列酶促反应通路。基础科研中不限定从胞外到胞内,指信息从一个分子传到另外的分子的过程。信号通路本质上就是前人研究的比较透彻的一些分子,包括他的调控方式的一个总结。

Wnt/βcatenin信号通路

Wnt /β-catenin信号转导通路是一条在生物进化中极为保守的通路。在正常的体细胞中,β-catenin只是作为一种细胞骨架蛋白在胞膜处与E-cadherin形成复合体对维持同型细胞的黏附、防止细胞的移动发挥作用。只有当细胞外Wnt信号分子与细胞膜上特异性受体Frizzled蛋白结合激

Wnt/βcatenin信号通路

大鼠肝癌模型法             实验方法原理 1. Wnt/β-catenin信号转导通路是一条在生物进化中极为保守的通路。在正常的体细胞中,β-catenin只是作为一

Wnt/βcatenin信号通路

大鼠肝癌模型法             实验方法原理 1. Wnt/β-catenin信号转导通路是一条在生物进化中极为保守的通路。在正常的体细胞中,β-catenin只是作为一

PKC信号通路图

PKC系统,又称为磷脂肌醇信号途径。系统由三个成员组成:受体、G蛋白和效应物。Gq蛋白也是异源三体,其α亚基上具有GTP/GDP结合位点,作用方式与cAMP系统中的G蛋白完全相同。该系统的效应物是磷酸肌醇特异的磷脂酶C-β(phosphatidylinositol-specific phosph

Wnt信号通路的信号途径介绍

经典的Wnt途径(Wnt /β-连环蛋白途径)导致基因转录的调节,并且被认为部分地由SPATS1基因负调节。Wnt /β-连环蛋白途径是Wnt途径中的一种,该途径会导致β-连环蛋白在细胞质中积累并最终会作为属于TCF的转录因子的转录共激活因子/ LEF家族易位至细胞核。没有Wnt,β-连环蛋白不会在

受体酪氨酸激酶的RTKs介导的信号通路及其基本模式

  受体酪氨酸激酶在没有同信号分子结合时是以单体存在的,并且没有活性;一旦有信号分子与受体的细胞外结构域结合,两个单体受体分子在膜上形成二聚体,两个受体的细胞内结构域的尾部相互接触,激活它们的蛋白激酶的功能,结果使尾部的酪氨酸残基磷酸化。磷酸化导致受体细胞内结构域的尾部装配成一个信号复合物(sign

G蛋白偶联受体信号通路激活的MAPK/Erk信号通路图

研究证实,受体酪氨酸激酶、G蛋白偶联的受体和部分细胞因子受体均可激活ERK信号转导途径。如:生长因子与细胞膜上的特异受体结合,可使受体形成二聚体,二聚化的受体使其自身酪氨酸激酶被激活;受体上磷酸化的酪氨酸又与位于胞膜上的生长因子受体结合蛋白2(Grb2)的SH2结构域相结合,而Grb2的SH3结构域

G蛋白偶联受体信号通路激活的MAPK/Erk信号通路图

研究证实,受体酪氨酸激酶、G蛋白偶联的受体和部分细胞因子受体均可激活ERK信号转导途径。如:生长因子与细胞膜上的特异受体结合,可使受体形成二聚体,二聚化的受体使其自身酪氨酸激酶被激活;受体上磷酸化的酪氨酸又与位于胞膜上的生长因子受体结合蛋白2(Grb2)的SH2结构域相结合,而Grb2的SH3结构域

我国学者揭示鱼类干扰素的负调控机制

  干扰素(Interferon,IFN)是一类具有广泛生物学活性的蛋白质,具有调节机体免疫功能、抗病毒、抗肿瘤等多种作用,是机体防御系统的重要组成部分。机体一旦识别病原微生物的病原相关分子模式后就会触发一系列信号通路(如RLR信号通路)诱导IFN的产生,进而清除病原体。免疫反应的每一个阶段都需要正

SAPK/JNK信号级联信号通路相关CRKL

该基因编码一个包含sh2和sh3(SRC同源)结构域的蛋白激酶,该结构域已被证明激活ras和jun激酶信号通路并以ras依赖的方式转化成纤维细胞。是bcr-abl酪氨酸激酶的底物,在bcr-abl的成纤维细胞转化中起作用,可能致癌。This gene encodes a protein kinase

SAPK/JNK信号级联信号通路相关AXL

酪氨酸蛋白激酶受体UFO是一种人类由AXL基因编码的酶。 该基因最初被命名为UFO,因为这种蛋白质的功能不明。 然而,自其发现以来的几年中,对AXL表达谱和机制的研究使其成为一个越来越有吸引力的目标,特别是对于癌症治疗。 近年来,AXL已成为癌症细胞免疫逃逸和耐药性的关键促进因素,导致侵袭性和转移性

SAPK/JNK信号级联信号通路相关GNAQ

GNAQ基因所编码的蛋白属于鸟嘌呤核苷酸结合蛋白(G蛋白)的家族,GNAQ与GNA11形成的复合物为G蛋白α亚基,这两个基因调控细胞分裂,增强MEK(有丝分裂原活化蛋白激酶的激酶)蛋白活性,在80%的葡萄膜黑色素瘤病人中发现GNA11和GNAQ基因的突变,其机制为基因突变导致MEK的异常激活,目前正

SAPK/JNK信号级联信号通路相关DAXX

该基因编码一种多功能蛋白质,位于细胞核和细胞质的多个位置。它与多种蛋白质相互作用,如凋亡抗原fas、着丝粒蛋白c和转录因子红细胞增多症病毒e26癌基因同源物1。在细胞核中,编码的蛋白质作为一种与sumoylated转录因子结合的有效转录抑制因子发挥作用。它的抑制作用可以通过将这种蛋白质固定在早幼粒细

SAPK/JNK信号级联信号通路相关JUN

该基因是禽肉瘤病毒17的假定转化基因。它编码一种与病毒蛋白高度相似的蛋白质,并与特定靶DNA序列直接相互作用以调节基因表达。这个基因是无内含子的,被定位到1P32-P31,一个涉及人类恶性肿瘤易位和缺失的染色体区域。This gene is the putative transforming gen

信号通路的构成要素

构成信号通路的三部分原件:1. 受体(receptor)和配体(ligand)2. 蛋白激酶(kinase)3. 转录因子(transcription factors)