“毫米波TBps太高速芯连关键技术研讨会”在中国科大举行
10月22日至23日,“毫米波TBps太高速芯连关键技术”研讨会在中国科学技术大学举行,会议由中国科大微纳电子系统集成研究中心承办。来自中科院微电子所、清华大学、上海交通大学、东南大学、浙江大学、哈尔滨工业大学和国防科技大学以及UCLA等国内外著名高校的专家学者参加了研讨会。会议由中国科大信息学院院长李卫平主持。 微纳电子系统集成研究中心执行主任林福江教授在会上介绍了研究中心的结构、正在开展的项目研究和进展、中心主要方向和发展目标。林福江说,现在限制着超级计算机性能的一个重要问题是处理器与存储器的数据传输速度,而提高通信速度的一个关键是互连的问题,本次研讨会是针对高速互联进行讨论。 研讨会上,微电子所特聘研究员Daniel Guidotti博士首先做了Low Latency High Throughout Memory Interface 的报告,简单介绍了现在的超级计算机的情况以及现行总线面临的问题,提出了自己的新方案......阅读全文
纳米光子学与生物光子学联合研究中心在长春成立
国际纳米光子学与生物光子学联合研究中心日前在长春成立。这是长春理工大学与美国纽约州立大学在光学领域共同搭建的一个合作平台。 纳米制造技术是21世纪的关键技术之一,生命科学是当今世界科技发展的热点之一。随着激光技术、光谱技术、显微技术以及光纤技术的飞速发展,由光学、纳米、生物领域融合而成的新
深入研究辐射光子气穿过等离子体的辐射转移过程
随着近年来X射线天文学的快速发展,研究和发展X射线、等离子体中电子的散射(即康普顿散射)理论是高能天体物理辐射转移领域的重要课题之一。理论物理学家Kompaneets建立的经典Kompaneets方程描述了低能光子气和等离子体的康普顿散射-康普顿硬化过程,但该方程在处理硬X射线穿过“冷”的等离子
光子被光子散射证据首次找到
据物理学家组织网16日报道,欧洲核子中心(CERN)的ATLAS探测器中,发现了高能量下光子被光子散射的首个直接证据。这一过程极为罕见,两个光子相互作用并改变了方向,这证实了量子电动力学的最早预测之一。 ATLAS探测器项目物理协调员丹·托沃里说:“这是里程碑式的成果,是光在高能量下自身相互作
等离子体所与淮南市签订新能源研究中心项目协议
1月11日下午,中科院合肥物质科学研究院等离子体所与淮南市人民政府举行了“淮南新能源研究中心项目”协议签约仪式。淮南市委书记杨振超,市人大常委会副主任王玉成,市委常委、市委秘书长李忠,市委常委、常务副市长王诚,副市长成祖德,市政协副主席吴健、苏静、等离子体所所长李建刚等出席签约仪式。 根据
中科院物理所表面等离子体光子学研究取得新进展
物理所表面等离子体光子学研究取得新进展 近日,中国科学院物理研究所、北京凝聚态物理国家实验室的徐红星小组在表面等离子体光子学研究中取得新进展。他们的工作得到了国家自然科学基金委、科技部、中国科学院知识创新工程的资助。 表面等离子体共振是金属纳米结构非常独特的光学特性,对基于表面等离子体共振的纳米
光子与辐射
光子,又称“光量子”,是光和其它电磁辐射的量子单位。一般认为光子是没有质量的,有些理论中允许光子拥有非常小的静止质量,这样光子会最终衰变成一种质量更轻的粒子。如果这种衰变是确实可能的,光子就是有寿命的,据最新研究表明其寿命为10的18次方年,甚至比宇宙的寿命都长,真正可以说得上是万世不灭。平常我们所
光子仪作用
主要是活血通经,通络止痛,祛风止痉,改善局部的血液循环,起到消炎消肿的作用。在临床上应用广泛,可用外伤引起的软组织肿胀及创伤性关节炎,可以用于风湿类风湿性关节炎的病变引起的疼痛,也可以用于颈椎退行性病变,腰椎退行性病变,骨质增生,颈椎不稳,腰椎不稳,椎间盘退行病变及突出引起的疼痛。
单光子探测
采用时间分辨单光子计数(TCSPC)技术,测量荧光(包括自发荧光、荧光染料、荧光蛋白)分子的寿命,可用于:1测量染料的内在性质,如异构化、质子化、折叠等;2超出荧光分辨率的微环境研究,如分子结合、离子浓度、pH、亲脂性环境、膜电位等;3光谱非常接近的多种染料的分离;染料的光学物理特性研究等等。FCS
《自然—光子学》:单光子波长转换首次实现
美国国家标准和技术研究院(NIST)10月15日表示,科学家首次将量子源(半导体量子点)产出的波长为1300纳米的近红外单光子转换成波长为710纳米的近可见光光子。这种单光子波长(或颜色)转换的实现有望帮助开发出拥有量子通信、量子计算和量子计量的混合型量子系统。研究论文发表在《自然—光
185万!生态环境研究中心三重四极杆电感耦合等离子质谱
公告信息:采购项目名称中国科学院生态环境研究中心企业信息三重四极杆电感耦合等离子体质谱仪采购项目品目货物/专用设备/专用仪器仪表/其他专用仪器仪表采购单位中国科学院生态环境研究中心企业信息行政区域市辖区获取招标文件时间2022年08月02日至2022年08月08日每日上午:9:00 至 11:30
首次在集成光子芯片上产生偏振纠缠光子对
近日,中科院西安光学精密机械研究所的外专千人计划Brent E. Little与加拿大魁北克国立科学研究所、香港城市大学、澳大利亚墨尔本皇家理工大学等单位合作,利用非线性微环谐振腔中TE和TM模式间的自发四波混频效应,结合微环谐振腔的滤波选模作用,首次在集成光子芯片上产生了偏振纠缠光子对的研究成
光子晶体光纤简介
简介光子晶体光纤简称PCF(Photonic Crystal Fiber),zui早于20世纪90年代中后期开发出来,并迅速进入商用。PCF可分为两大类:基于全内反射的折射率引导型光纤和基于光子带隙效应的光子带隙光纤。前者在结构上,光纤纤芯是固体结构,而光子带隙光纤的纤芯是低折射率材料,比如中空结构
《自然》:世界最小纳米激光器在美问世
研究人员最近展示了一种有史以来最小的激光器,其包含一个直径仅为44纳米的纳米粒子。该器件因能产生一种称为表面等离子的辐射而被命名为“spaser”。这项新技术可允许光子局限在非常小的空间内,一些物理学家据此认为,就像晶体管之于现今的电子产品,spaser也许将成为未来光学计算机的基础。 美
表面等离子共振的等离子波
等离子体通常指由密度相当高的自由正、负电荷组成的气体,其中正、负带电粒子数目几乎相等。把金属表面的价电子看成是均匀正电荷背景下运动的电子气体,这实际上也是一种等离子体。当金属受电磁干扰时,金属内部的电子密度分布会变得不均匀。因为库仑力的存在,会将部分电子吸引到正电荷过剩的区域,被吸引的电子由于获
光电创新耀未来——武汉光电国家研究中心能源光子学研究部“HORIBA-科学奖”颁奖仪式成功举行
2024年1月8日,首届武汉光电国家研究中心(以下简称:中心)能源光子学研究部“HORIBA 科学奖”颁奖仪式在光电信息大楼成功举行。武汉光电国家研究中心能源光子学研究部执行主任王磊教授、党支部书记胡彬教授、工程科学学院行政副院长徐书华、HORIBA 集团科学仪器事业部中国区总经理濮玉梅女士、销
在随机激光中观察到光子霍尔效应和光子磁阻
安徽大学教授胡志家团队在随机激光体系中观察到光子霍尔效应和光子磁阻,揭示了宏观层面及微观尺度上磁场对随机激光无序散射的调控过程,提出了利用磁光效应调控随机激光散射无序度的方法。该研究成果日前发表于《自然-通讯》。磁场对随机激光无序散射的调制以其丰富的物理意义引起了广泛的关注。在此次工作中,研究团队制
LaVision双光子显微镜多线扫描双光子成像(二)
2. 方法与结果 为了从激光扫描显微镜的功能性成像中得出重要结论,一个高的时间分辨率是很重要的。在低光情况下,这通常通过进行单线扫描来获取。这被以一个垂直系统(VS)神经元的突触前分支的激光共聚焦(Leica SP2)钙离子成像示例 (see Fig. 1, Table 1). 这类神
LaVision双光子显微镜多线扫描双光子成像(三)
2.2.多线TPLSM中通过成像检测释放光 在单光束TPLSM中,光电倍增管PMT或者雪崩二极管APD可以很方便地用于释放光检测,由于双光子激发的原理,激发只发生在激光焦点处。因此,用于屏蔽离焦光线的共焦小孔变得不必要,并且可以使用NDD检测。这意味着激发光不会被送回扫描镜,而是直接进入位于靠
LaVision双光子显微镜多线扫描双光子成像(一)
Journal of Neuroscience Methods 151 (2006) 276–286Application of multiline two-photon microscopy to functional in vivo imagingRafael Kurtz a,∗, Matthi
LaVision双光子显微镜多线扫描双光子成像(四)
2.3. 多线TPLSM中的获取模式 我们以两种获取模式操作多线TPLSM:第一种,整个研究使用所谓“帧扫描”模式,以64束激光在X、Y方向扫描样品。因此焦平面上激发了均一性照明,假定光束阵列的横向步长尺寸没有过于粗糙(通常使用≤400 nm的步长尺寸)。在Fig. 3A,展示了以“帧
双光子显微镜的双光子显微镜的优势
双光子荧光显微镜有很多优点:1)长波长的光比短波长的光受散射影响较小容易穿透标本;2)焦平面外的荧光分子不被激发使较多的激发光可以到达焦平面,使激发光可以穿透更深的标本;3)长波长的近红外光比短波长的光对细胞毒性小;4)使用双光子显微镜观察标本的时候,只有在焦平面上才有光漂白和光毒性。所以,双光子显
为什么原子可以吸收光子?电子跟光子有什么关系?
原子吸收光子,实际上是原子中的电子在吸收光子。 凡是带有电荷的微粒,都既能产生光子、又能吸收光子。光子是电荷之间相互联系的信使。万物总是相互联系的(试想:若无联系,万物何以存在?),光子就是电荷之间相互联系的方式。 电子一般不会单独转化为光子,这不符合电荷守恒定律。只有一对正负电
显微镜里,单光子、双光子显微镜的区别
这个以前解释过,单光子就是通常的荧光激发方式,一个光子激发一个荧光分子发光,荧光波长比激发波长稍微长一些;双光子就是用两个光子激发一个荧光分子,激发光子能量小于荧光光子能量,因此激发波长长于荧光波长。现在公认的双光子激发的用途:1. 用于用到红外激发,穿透深度要高于单光子激发,2. 用于需要更高的激
目前光子技术的现状
从理论上来说,硅基器件完全没可能在性能上比过III-V。硅光的优势在于cmos厂不用换生产线,所以注定是一个退而求其次的技术。但话说回来,几大fab真的投钱建几条III-V线又有何不可呢。看看avago这几年的崛起和intel的失利。
LSCM的双光子技术
近年来LSCM推出了双光子技术,即利用两个低能量激发光子激发一个荧光分子,其荧光波长等于一个高能量单光子直接激发一个荧光分子,却降低荧光损耗,并具有更高的激发功率和稳定的穿透力,从而提高图片分辨率,值得进行尝试和应用。总之,LSCM技术因其简单易行的前期处理、高辨识度的后期成像及无损于样品等优势,将
什么叫光子计数技术
光子计数技术,是检测极微弱光的有力手段,这一技术是通过分辨单个光子在检测器(光电倍增管)中激发出来的光电子脉冲,把光信号从热噪声中以数字化的方式提取出来。这种系统具有良好的长时间稳定性和很高的探测灵敏度。目前,光子技术系统广泛应用于科技领域中的极微弱光学现象的研究和某些工业部分中的分析测量工作,如在
光子牵引效应的概念
光子牵引效应是指在经典电磁波频率范围(即光子能量hν
光子特性相关概述
从波的角度看,光子具有两种可能的偏振态和三个正交的波矢分量,决定了它的波长和传播方向;从粒子的角度看,光子静止质量为零,电荷为零,半衰期无限长。光子是自旋为1的规范玻色子,因而轻子数、重子数和奇异数都为零。 光子的静止质量严格为零,本质上和库仑定律严格的距离平方反比关系等价,如果光子静止质量不
光子的特性详细叙述
光子能够在很多自然过程中产生,例如:在分子、原子或原子核从高能级向低能级跃迁时电荷被加速的过程中会辐射光子,粒子和反粒子湮灭时也会产生光子;在上述的时间反演过程中光子能够被吸收,即分子、原子或原子核从低能级向高能级跃迁,粒子和反粒子对的产生。 在真空中光子的速度为光速,能量E和动量p之间关系为
光子如雪也能崩塌
寂静的雪山,随着一声“咔嚓”的轻响,雪层断裂,“白色妖魔”呼啸而下,巨大的力量能将将所过之处扫荡殆尽,自然界的雪崩危害巨大,能摧毁森林、威胁人类。实际上,雪崩并非雪花专有,光子也能发生雪崩,同样的能量喷涌,带来的却是革命性的应用。 近日,研究人员开发出了第一个证明“光子雪崩”的纳米材料,这可