杰青学者张劲松揭示生长素介导乙烯反应的信号转导过程
植物激素生长素和乙烯协同调控植物根的生长。乙烯促进了生长素的合成与运输,生长素受体TIR1/AFB2感受到生长素后,结合并泛素化转录抑制子Aux/IAA蛋白,使其通过26S蛋白酶体途径降解,从而将转录因子ARF释放出来调控下游基因的表达。目前介导乙烯反应的生长素信号过程并不清楚。图:SOR1参与生长素介导的乙烯反应的机制模型 中国科学院遗传与发育生物学研究所张劲松研究组和陈受宜研究组通过筛选水稻乙烯不敏感突变体,鉴定到了一个位于TIR1/AFB2下游特异调控根部乙烯反应的新因子MHZ2/SOR1,并解析了SOR1参与生长素介导乙烯反应的信号转导机制。研究发现,SOR1是一个植物特有的E3泛素连接酶,可以与OsIAA26蛋白相互作用并调控其泛素化降解。另外,SOR1也可以与OsIAA9蛋白相互作用,但是不能泛素化OsIAA9蛋白,反过来,OsIAA9蛋白却可以抑制SOR1的E3泛素连接酶活性。与OsIAA9不同,OsIAA2......阅读全文
杰青学者张劲松揭示生长素介导乙烯反应的信号转导过程
植物激素生长素和乙烯协同调控植物根的生长。乙烯促进了生长素的合成与运输,生长素受体TIR1/AFB2感受到生长素后,结合并泛素化转录抑制子Aux/IAA蛋白,使其通过26S蛋白酶体途径降解,从而将转录因子ARF释放出来调控下游基因的表达。目前介导乙烯反应的生长素信号过程并不清楚。图:SOR1参与
遗传发育所揭示生长素介导乙烯反应的信号转导过程
植物激素生长素和乙烯协同调控植物根的生长。乙烯促进了生长素的合成与运输,生长素受体TIR1/AFB2感受到生长素后,结合并泛素化转录抑制子Aux/IAA蛋白,使其通过26S蛋白酶体途径降解,从而将转录因子ARF释放出来调控下游基因的表达。目前介导乙烯反应的生长素信号过程并不清楚。 中国科学
生长素和乙烯对叶片脱落的效应实验
实验方法原理脱落的自然调节是由叶片(或果实)供应的生长素的抑制作用和乙烯的促进作用来实现的,幼嫩的叶片产生大量的生长素,从而防止了叶片的脱落。但当叶片老化时,一方面从叶片供应的生长素下降到低水平,使离层细胞对乙烯的敏感性增强;另一方面,衰老使乙烯的生物合成增加,这样脱落就发生。本试验是由包括叶柄脱落
生长素和乙烯对叶片脱落的效应实验
实验方法原理:脱落的自然调节是由叶片(或果实)供应的生长素的抑制作用和乙烯的促进作用来实现的,幼嫩的叶片产生大量的生长素,从而防止了叶片的脱落。但当叶片老化时,一方面从叶片供应的生长素下降到低水平,使离层细胞对乙烯的敏感性增强;另一方面,衰老使乙烯的生物合成增加,这样脱落就发生。本试验是由包括叶柄脱
生长素和乙烯对叶片脱落的效应实验
实验方法原理 脱落的自然调节是由叶片(或果实)供应的生长素的抑制作用和乙烯的促进作用来实现的,幼嫩的叶片产生大量的生长素,从而防止了叶片的脱落。但当叶片老化时,一方面从叶片供应的生长素下降到低水平,使离层细胞对乙烯的敏感性增强;另一方面,衰老使乙烯的生物合成增加,这样脱落就发生。本试验是由包括叶柄脱
中科大百人计划PLOS发表遗传学成果
在拟南芥中,气态的植物激素乙烯参与了根系生长和发育的调控作用。众所周知,受乙烯抑制的根系生长,涉及到生长素,部分是通过WEAK ETHYLENE INSENSITIVE2/ANTHRANILATE SYNTHASE α1 (WEI2/ASA1)的作用介导的,WEI2/ASA1编码色氨酸生物合成中
研究发现水稻LC3调控生长素信号和叶倾角
11月29日,PLoS Genetics 在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所薛红卫研究组题为SPOC domain-containing protein Leaf inclination3 interacts with LIP1 to regulate rice l
生长素信号途径调控植物差异性生长的分子机制
4月3日,《自然》(Nature)杂志在线发表了原中国科学院分子植物卓越创新中心/植物生理生态研究所上海植物逆境生物学研究中心徐通达(现福建农林大学海峡联合研究院园艺中心教授)研究组完成的题为TMK1-mediated auxin signalling regulates differentia
我国发现茶树响应“倒春寒”的乙烯信号和钙离子信号机制
近年来随着茶树早生品种的广泛种植,低温尤其是“倒春寒”对茶叶生产的影响越来越大,“倒春寒”已经成为我国茶叶生产的主要灾害气候因子之一,解决“倒春寒”问题已成为我国茶叶界共同关注的重要难题及热点。近期,我所茶树遗传育种团队利用转录组学、代谢组学等技术手段,在茶树新梢响应“倒春寒”的分子调控机理研究
揭示生长素信号调控根尖干细胞微环境的新机制
近日,山东大学生命科学学院教授丁兆军团队发表新成果,揭示了通过精准调控根尖静止中心生长素信号,维持根尖干细胞稳态的分子新机制。该成果在线发表于《细胞研究》。 根作为植物最重要的器官之一,不仅起着固着和支持作用,也是植物吸收水分和养分的主要器官,而胚后根系的发育依赖于根尖干细胞微环境。植物激素生
微生物所揭示miRNA调控植物生长素信号途径的机制
microRNA(miRNA)是一类广泛存在于生物体的21nt到24nt的短的非编码RNA,通过碱基互补配对的方式介导其靶标mRNA的剪切或者抑制其翻译。在植物中,miRNA主要通过剪切靶标mRNA调控生长发育以及抗病抗逆作用。植物生长素(auxin)信号途径在植物生长发育过程中具有重要的调控作
研究揭示生长素信号途径调控植物差异性生长的分子机制
4月3日,《自然》(Nature)杂志在线发表了原中国科学院分子植物卓越创新中心/植物生理生态研究所上海植物逆境生物学研究中心徐通达(现福建农林大学海峡联合研究院园艺中心教授)研究组完成的题为TMK1-mediated auxin signalling regulates differentia
研究揭示生长素信号途径调控植物差异性生长的分子机制
4月3日,《自然》(Nature)杂志在线发表了原中国科学院分子植物卓越创新中心/植物生理生态研究所上海植物逆境生物学研究中心徐通达(现福建农林大学海峡联合研究院园艺中心教授)研究组完成的题为TMK1-mediated auxin signalling regulates differentia
发现MHZ9是水稻乙烯信号途径的翻译调控因子
蛋白质是生命活动的主要承担者,其合成由编码基因的mRNA含量与翻译效率共同决定。翻译调控可在不改变mRNA含量的情况下,快速可逆地调控蛋白合成,有助于生物在感知内外源信号后,迅速做出应变行为。 乙烯信号在植物生长发育与逆境胁迫中发挥重要作用。前期拟南芥研究发现,EIN2通过直接或间接靶向乙烯信
水果保鲜:乙烯信号“开关”找到--可延迟农作物的衰老
近日从北京大学获悉,该校生命科学学院郭红卫教授带领的研究团队在植物激素乙烯信号转导领域取得突破性进展,发现了由EIN2蛋白调控的新的乙烯信号转导机制。应用该成果,将可以人为控制乙烯信号“开关”,让植物抵御各种环境因素的胁迫,或延迟果实的成熟和农作物的衰老,为农业生产实践服务。相关研究成果在线发表
生长素的作用
1.低浓度的生长素有促进器官伸长的作用。从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。不同器官对生长素的反应不同,根最敏感,芽次之,茎的敏感性最差。生长素能促进细胞伸长的主要原因,在于它能使细胞壁环境酸化、水解酶的活性增加,从而使细胞壁的结构松弛、可塑性
水稻乙烯信号转导及调控盐胁迫反应的新机制
植物气体激素乙烯在植物生长发育以及应对逆境胁迫过程中起着重要作用。在拟南芥中,已经建立了一个从乙烯信号接收到转录调控的线性乙烯信号转导模型。然而,在单子叶植物,尤其是水稻中的乙烯信号转导的作用机制还不甚清楚。 中国科学院遗传与发育生物学研究所张劲松研究组和陈受宜研究组分离鉴定了一系列的水稻乙烯
脑脊液生长素的概述
生长素是一种同化激素,能促进DNA、RNA及蛋白质的合成,加强细胞对氨基酸的摄取,与胰岛素有拮抗作用,能抑制糖的利用,促进脂肪分解,使血糖升高。脑垂体前叶富含此种激素,其分泌受下丘脑的生长素释放抑制激素和生长素释放激素的调节,病理情况可影响生长素的分泌。
生长素的研究历史
C.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的
生长素的存在部位
生长素在低等和高等植物中普遍存在。生长素主要集中在幼嫩、正生长的部位,如禾谷类的胚芽鞘,它的产生具有“自促作用”,双子叶植物的茎顶端、幼叶、花粉和子房以及正在生长的果实、种子等;衰老器官中含量极少。用胚芽鞘切段证明植物体内的生长素通常只能从植物的形态上端(根尖分生区或芽)向下端(茎)运输,而不能相反
生长素的生理作用
1.低浓度的生长素有促进器官伸长的作用。从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。不同器官对生长素的反应不同,根最敏感,芽次之,茎的敏感性最差。生长素能促进细胞伸长的主要原因,在于它能使细胞壁环境酸化、水解酶的活性增加,从而使细胞壁的结构松弛、可塑性
生长素的研究历史
C.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的
生长素的主要作用
1.低浓度的生长素有促进器官伸长的作用。从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。不同器官对生长素的反应不同,根最敏感,芽次之,茎的敏感性最差。生长素能促进细胞伸长的主要原因,在于它能使细胞壁环境酸化、水解酶的活性增加,从而使细胞壁的结构松弛、可塑性
生长素的生理作用
一、教学目标1.概述植物生长素的生理作用。2.尝试探索生长素类似物促进插条生根的zui适浓度。二、教学重点和难点1.教学重点 生长素的生理作用。2.教学难点 探究活动:探索生长素类似物促进插条生根的zui适浓度。三、教学策略1.图形引导,问题入手。 阅读生物学方面的资料时,要能读懂模式图、示意图和
生长素的基本作用
生长素最基本的作用是促进细胞的伸长生长,这种促进作用,在一些离体器官如胚芽鞘或黄化茎切段中尤为明显。生长素为什么能促进细胞的伸长生长,又以什么方式起作用的?植物细胞的最外部是细胞壁,细胞若要伸长生长即增加其体积,细胞壁就必须相应扩大。细胞壁要扩大,就首先需要软化与松弛,使细胞壁可塑性加大,同时合成新
乙烯知识
硫酸乙醇三比一,温计入液一百七。迅速升温防碳化,碱灰除杂最合适。 乙烯分子含双键,氧化加成皆不难。高锰酸钾紫红去,卤素氢气氢卤酸。 乙烯聚合好塑料,燃焰明亮出黑烟。乙烯水化制乙醇,氧化得醛又得酸。 解释: 1、乙烯分子含双键,氧化加成皆不难:这两句的意思是说因为乙烯中含有双键,所以易
乙烯市场对聚乙烯(LLDPE)市场影响
乙烯的产能、产量、贸易情况及亚洲地区价格等都会对线性低密度聚乙烯(LLDPE)的市场价格产生直接影响。2012年全球乙烯产能再度进入扩张阶段,全球新增产将超过600万吨,但是在新增产能投产之前,乙烯价格对LLDPE价格形成支撑。经过了2011年和2012年前三个季度的新产能消化之后,从2012年
ACC引起的质外体碱化对拟南芥细胞伸长具有重要作用
植物细胞的扩展和伸长需要质外体的酸化。酸性生长理论认为质子作为最初的细胞壁松弛因子引起细胞的扩展,研究证明质外体的低pH增加了细胞壁中扩展素的活性,这可能打破H+结合的纤维素链和交联的多聚糖。质外体的pH由PM H+-ATPase引起的H+外流和H+结合转运体引起的H+内流决定。激素信号如生长素与环
生长素的发现与研究
C.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的
关于生长素的相关介绍
生长素(auxin)是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素。 英文简称IAA,国际通用,是 吲哚乙酸(IAA)。4-氯-IAA、5-羟-IAA、 萘乙酸(NAA)、 吲哚丁酸等为类生长素。 1872年波兰园艺学家谢连斯基对根尖控制根伸长区生长作了研究[1] ;后来达尔文父子对草