过程工程所非晶态纳米材料与无容器制备技术研究获进展

近日,中科院过程工研究所李建强副研究员等的研究论文Amorphous titanate nanospheres fabricated using contactless phase change process被英国皇家化学会期刊Journal of Materials Chemistry以封面文章形式刊登(2012, 19, DOI:10.1039/C2JM30621B),并被列为亮点文章(Feature Articles)。 该论文首先提出了一种制备亚稳态纳米材料的普适性方法——无接触相变方法。使用廉价的微米级颗粒作为原料,采用等离子体、火焰等高温束流加热并完全蒸发微米颗粒,蒸气在无接触(无容器)状态下冷却发生冷凝、凝固相变,最终生成亚稳态纳米材料。该方法具有简单、连续、易规模化的特点。研究人员采用该方法首次制备出一系列钛酸盐基纳米非晶球,纳米球具有高折射率(nd=2.20~2.35)、深紫外到中红外极宽波段内(0......阅读全文

什么是纳米晶非晶态金属

它是一种特殊用途的金属,粒径已经达到纳米级,但是没有固定的形态结构,纳米非晶态金属比纳米晶态金属有更大的比表面积。因此其在催化剂行业用途比较广泛。如纳米镍非晶态颗粒,是一种高效的燃料催化剂。

过程工程所非晶态纳米材料与无容器制备技术研究获进展

  近日,中科院过程工研究所李建强副研究员等的研究论文Amorphous titanate nanospheres fabricated using contactless phase change process被英国皇家化学会期刊Journal of Materials Chemistry以封面

新研究发现非晶态高硅氧化物纳米颗粒

在广东省科学院建设国内一流研究机构行动专项资金项目等资助下,广东省科学院新材料研究所粉末冶金团队首次发现非晶态高硅氧化物纳米颗粒,并阐释了原位氧化纳米颗粒增强选区激光熔化Co-Cr-W合金强化机制。相关研究近日发表于《材料科学技术》(Journal of Materials Scienc

新研究发现非晶态高硅氧化物纳米颗粒

在广东省科学院建设国内一流研究机构行动专项资金项目等资助下,广东省科学院新材料研究所粉末冶金团队首次发现非晶态高硅氧化物纳米颗粒,并阐释了原位氧化纳米颗粒增强选区激光熔化Co-Cr-W合金强化机制。相关研究近日发表于《材料科学技术》(Journal of Materials Scienc

非晶态金属的缺点

但是非晶态合金也有其致命弱点,即其在500度以上时就会发生结晶化过程,因而使材料的使用温度受到限制。制造成本较高也是限制非晶态金属广泛应用的一个重要问题。

晶态金属与非晶态金属的主要区别有哪些

非晶态金属是指在原子尺度上结构无序的一种金属材料。大部分金属材料具有很高的有序结构,原子呈现周期性排列(晶体),表现为平移对称性,或者是旋转对称,镜面对称,角对称(准晶体)等。而与此相反,非晶态金属不具有任何的长程有序结构,但具有短程有序和中程有序(中程有序正在研究中)。晶态金属与非晶态金属的主要区

研究人员利用块体非晶态材料中实现加工硬化

  加工硬化或形变硬化,即金属材料随塑性变形而引起强度升高的行为,反映材料在均匀塑性变形中抵抗进一步变形的能力。它是工程材料力学行为最重要的现象,也是金属作为结构材料被广泛应用的重要依据。非晶合金(也称金属玻璃)具有许多优异的机械性能(高屈服应力、高韧性和破纪录的“损伤容忍度”),但应变软化却是其致

制备非晶态物质的方法介绍

(1)液相急冷法将融熔态的物质以大干一定速率冷却,使物质保持融熔态时的原子排列,得到块状的玻璃态。这类物质往往具有大于1 eV的迁移率带隙,大多数非晶半导体可以用此法制成。所以非晶半导体早期也称为玻璃半导体。SeAsTe视象管靶面的光敏膜就是玻璃态的光电导体。(2)气相沉积法有些物质,例如Te、Ge

非晶态固体的主要特点

非晶态固体的主要特点除了高度的短程有序(~1nm左右),长程无序外,另一特点是其亚稳性。图2从热力学观点看,晶体应是对应于自由能最低的状态。因此,对于同一材料来说,非晶态比晶态的自由能要高。由于非晶固体是在比到达平衡点更短的时间内以某种手段使体内的原子配置冻结起来而制得的,因此在局部区域可以达到热平

非晶态物质的x射线衍射花样与晶态物质有什么区别

非晶态的衍射图样是环状的漫散射的光晕。单晶是只有一个晶格,电子衍射图样是大量衍射亮点,排布成环状。多晶是多个晶粒组成,电子衍射花样是连续的同心圆环。

非晶态物质的x射线衍射花样与晶态物质有什么区别

非晶态的衍射图样是环状的漫散射的光晕。单晶是只有一个晶格,电子衍射图样是大量衍射亮点,排布成环状。多晶是多个晶粒组成,电子衍射花样是连续的同心圆环。

非晶态物质的x射线衍射花样与晶态物质有什么区别

非晶态的衍射图样是环状的漫散射的光晕。单晶是只有一个晶格,电子衍射图样是大量衍射亮点,排布成环状。多晶是多个晶粒组成,电子衍射花样是连续的同心圆环。

中国化学会晶态材料前沿论坛举行

  2015年晶态材料化学前沿论坛近日在河南省开封市举办,来自北京大学、清华大学和中国科学技术大学等单位的35位专家学者就近年来晶态材料化学研究领域的最新研究成果展开探讨,对晶态材料化学相关交叉学科未来的发展趋势进行了展望。  此次论坛由中国化学会晶体化学专业委员会主办,河南省化学会、河南大学化学化

北航规则形貌非晶纳米材料研究获进展

  日前《美国化学会志》发表研究论文,北京航空航天大学化学与环境学院教授郭林及其研究小组近日探索出制备具有规则形貌的空心非晶金属氢氧化物纳米材料的路径,同时实现了对产物元素成分、尺寸大小、壳壁厚度等调控,是目前国内首例实现可控制备具有规则形貌的非晶纳米材料的方法。   北京航空航天大学化学与环境学

非晶态二氧化硅的制备方法

  非晶态二氧化硅的制备包含五步,分别是制备二氧化硅质的凝胶、造粒工序、烧结工序、清洗工序、干燥工序。  1、制备二氧化硅质的凝胶  使四氯化硅水解而生成二氧化硅质的凝胶、或使四甲氧基硅烷等有机硅化合物水解而生成二氧化硅质的凝胶、或者使用气相二氧化硅生成二氧化硅质的凝胶。  2、造粒工序  通过干燥

“功能导向晶态材料”重大研究计划项目指南发布

  国家自然科学基金重大研究计划遵循“有限目标、稳定支持、集成升华、跨越发展”的总体思路,围绕国民经济、社会发展和科学前沿中的重大战略需求,重点支持我国具有基础和优势的优先发展领域。重大研究计划以专家顶层设计引导和科技人员自由选题申请相结合的方式,凝聚优势力量,形成具有相对统一目标或方向的

国家纳米中心在非硅基材料纳米电子器件研究中取得进展

  电子元器件的多功能化是应用电子技术发展的重要趋势,因而非硅基材料越来越受到研究人员的关注。2016年,中国科学院国家纳米科学中心鄢勇课题组与韩国蔚山科技大学教授Bartosz Grzybowski等人合作,采用金属纳米颗粒构建了双层结构的二极管、电阻等电子元器件,并与各种金纳米颗粒构建的传感器件

非晶态二氧化硅改性后的衍射峰

20度左右出峰,应是方石英。

非晶态固体弹塑性相互作用机制研究取得进展

  不同于晶体塑性的位错机制,非晶态固体塑性变形的基本载体是原子或粒子以集团模式的局域协同重排,通常被称为“剪切转变”(shear transformation,ST)。通过非局域弹性效应,ST事件可自组装形成不同时空尺度的塑性事件,如宏观屈服、局部化剪切带等。研究表明,邻近屈服以及屈服后的塑性事件

福建物构所发表晶态钛氧簇材料研究综述

  作为连接分子和纳米氧化钛材料的桥梁,晶态钛氧簇合物具有两方面的显著优势。首先它具备精准的结构信息,为后期的理论计算和机理研究提供了数据基础;其次,它在溶剂中具有良好的溶解性,可以通过重结晶、后修饰或者自组装的方法得到一系列可应用于光、电、催化等领域的功能材料。因此,晶态钛氧簇研究成为了当今化学、

汪卫华院士:非晶态物理学研究仍须克服诸多短板

汪卫华  年轻人是学术的重要支撑力量,所以我们还要在体制机制或是创新机制上尽可能地支持、重用年轻人,营造良好的学术氛围。  如今,我国非晶态物理学研究虽然已走在世界前列,但要保持优势不变,甚至超越世界先进水平,仍有许多短板需要克服。  我本人见证更是参与了该领域的发展历程,并始终对此领域保持着最初的

科学家首次合成高度有序晶态金刚石结构纳米线

北京高压科学研究中心毛河光院士与郑海燕、李阔课题组,在极端高温高压条件下首次合成具有专一tube(3,0)结构的碳-氮有序间隔排列超细金刚石纳米线,并发现芳香体系在高压下的[1,3,5]协同加成机理,由此提出极端条件下合成有序产物的控制策略,相关成果于4月19日发表在美国《国家科学院院刊》(PNAS

室温下PdSi纳米颗粒的类液体行为

  作为目前已经被大量市场化的应用材料,低维材料表现出各种优异性能,在半导体、光学、医药、能源、信息技术等领域及人们日常生活用品中都扮演着重要的角色。同时凝聚态物理诸多前沿问题也都与低维材料及其制备工艺息息相关。然而,目前对于低维非晶材料的研究及相关报道还很少。2007年,Ediger利用薄膜沉积技

介晶态的概念

分子有序度介于完美三维、长程位置及取向有序的固体晶体和缺乏长程有序的各向同性液体、气体及非结晶固体之间的一种物质态;

液晶态的定义

液晶态------长程取向有序,部分位置有序或完全位置无序的一种介晶态;

功能导向晶态材料结构设计重大研究计划项目指南

功能导向晶态材料的结构设计和可控制备重大研究计划2016年度项目指南  晶态材料是长程有序固态材料的总称,具有结构有序稳定、构效关系清楚、本征特性多样、物理内涵丰富、易于复合调控等特征。晶态材料研究正在向以功能为导向,通过结构设计和可控制备获得所需应用特性材料的方向发展。  一、科学目标  本重大研

新策略让木材薄膜兼具高强度和高韧性

近日,东北林业大学甘文涛教授首次提出通过两相纳米结构调控,将天然轻木转化为一种兼具高强度和高韧性的木材薄膜,并揭示了其力学增强机理,为木材保护与功能改良提供了新理论。相关成果发表在《科学进展》。构建晶态-非晶态复合结构是解决材料高强度与高韧性之间的内在冲突的有效途径。然而,构建晶态-非晶态界面仍面临

物理所发展出制备单质非晶金属的普适策略

  传统观念中,物质被划分为气体、液体和固体。如果所有物质均可在实验上通过“冷冻”过程转化为非晶态,将证明非晶态是常规物质的第四态即非晶态是物质的基本状态之一。在非晶态物质形成的研究中,有学者提出了“所有物质都能转化为非晶态?”这一关键问题,并预测当金属的过冷度足够大时可以通过快速冷却形成非晶态。如

纳米服装,真的有纳米材料吗?

越来越多的高科技已经进入到我们日常生活之中,比如纳米服装。将纳米级的微粒覆盖在纤维表面或镶嵌在纤维甚至分子间隙间,利用纳米微粒表面积大、表面能高等特点,在物质表面形成一个均匀的、厚度极薄的(肉眼观察不到、手摸感觉不到)、间隙极小(小于100nm)的‘气雾状’保护层。使得常温下尺寸远远大于100nm的

拓扑晶态绝缘体碲化锡纳米线研究获得新进展

  拓扑绝缘体(Topological Insulator)是一种新奇的物质状态,它的体相是绝缘态而表面却是零带隙的金属态。尤其它的表面是受拓扑保护的导电态,不受非磁性杂质和晶体缺陷的干扰,因而在无损耗的量子计算和新奇的自旋电子器件等领域具有重要的应用价值。时间反演对称性保护的三维拓扑绝缘体如B