甜菜碱合成途径及其在基因工程育种中的应用
摘要 在不良的环境胁迫条件下许多生物体内大量积累甜菜碱,甜菜碱是一种小分子渗透调节物质,它可以调节细胞渗透势,保护蛋白质结构和代谢酶类。由于甜菜碱的合成途径相对简单,通过基因工程技术将甜菜碱生物合成途径导入到不能自身合成渗透调节物并对胁迫条件敏感的重要农作物中,赋予其合成甜菜碱的能力,最终提高其抗性,已经成为当今抗逆育种的重要手段之一,并取得了一定的成绩。不同生物体内甜菜碱的合成途径、催化酶类、反应底物有所不同。在高等植物体、大肠杆菌和土壤细菌中,甜菜碱以胆碱为直接底物,经一或两步氧化而成。其底物胆碱来自于生物体内丝氨酸衍生物的甲基化。反应涉及的相关酶类和基因已经获得,该途径的基因工程研究也在一定程度上提高了转化株的抗性,但底物限制问题没有得到解决。嗜盐隐杆藻中存在另一条完全不同的途径,以甘氨酸为底物由2 个不同的甲基转移酶催化完成几个连续的甲基化反应生成甜菜碱,该途径不存在底物限制。本文全面地介绍了不同生物体中甜菜碱合成途径、......阅读全文
多肽合成主要途径
多肽的合成主要分为两条途径:化学合成多肽和生物合成多肽。 化学合成主要是以氨基酸与氨基酸之间缩合的形式来进行。在合成含有特定顺序的多肽时,由于多肽合成原料中含有官能度大于2的氨基酸单体,多肽合成时应将不需要反应的基团暂时保护起来,方可进行成肽反应,这样保证了多肽合成目标产物的定向性。多肽的化学
环鸟苷酸的合成途径
鸟苷酸环化酶(guanylate cyclase, GC)可将三磷酸鸟苷(guanosine triphosphate, GTP)催化为cGMP。其中,与膜受体结合的鸟苷酸环化酶和可以在膜受体与肽类激素(如心房钠尿肽)结合后被激活。而胞质中的游离鸟苷酸环化酶可被NO激活进而合成cGMP。
糖原的合成途径
(1)葡萄糖通过α-1,4糖苷键和α-1,6糖苷键相连而成的具有高度分支的聚合物。(2)糖原主要分为肝糖原和肌糖原;(3)糖原是可以迅速动用的葡萄糖储备。肌糖原分解可供肌肉收缩的需要,肝糖原分解提供血糖。短期饥饿后,血糖浓度的恒定主要靠肝糖原的分解。肝脏有葡萄糖-6-磷酸酶使肝糖原分解,肌肉组织缺乏
我国揭示PYL介导的ABA信号途径拮抗非ABA途径渗透胁迫应答
近日,《Cell Reports》杂志在线发表了植物逆境中心朱健康研究组和赵杨研究组题为“Arabidopsis duodecuple mutant of PYL ABA receptors reveals PYL repression of ABA-independent SnRK2 acti
关于从头合成的合成途径介绍
体内核苷酸的合成有两条途径: ①利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料合成核苷酸的过程,称为从头合成途径(de novo synthesis),是体内的主要合成途径。 ②利用体内游离碱基或核苷,经简单反应过程生成核苷酸的过程,称重新利用(或补救合成)途径(salvage pa
脂肪酸合成途径
生物体内由乙酰CoA合成脂肪酸的有:①非线粒体酶系合成途径:即胞浆酶系合成饱和脂肪酸途径。该途径的终产物是软脂酸,故又称为软脂酸合成途径,它是脂肪酸合成的主要途径。②线粒体酶系合成途径:又称饱和脂肪酸碳链延长途径。
环鸟苷酸的合成途径介绍
鸟苷酸环化酶(guanylate cyclase, GC)可将三磷酸鸟苷(guanosine triphosphate, GTP)催化为cGMP。其中,与膜受体结合的鸟苷酸环化酶和可以在膜受体与肽类激素(如心房钠尿肽)结合后被激活。而胞质中的游离鸟苷酸环化酶可被NO激活进而合成cGMP。
叶绿素a的生物合成途径
叶绿素a的生物合成途径,是由琥珀酰辅酶A和甘氨酸缩合成δ-氨基乙酰丙酸,两个δ-氨基乙酰丙酸缩合成吡咯衍生物胆色素原,然后再由4个胆色素原聚合成一个卟啉环──原卟啉Ⅳ,原卟啉Ⅳ是形成叶绿素和亚铁血红素的共同前体,与亚铁结合就成亚铁血红素,与镁结合就成镁原卟啉。镁原卟啉再接受一个甲基,经环化后成为具有
泛酸的生物合成途径
维生素B5是由α-酮异戊酸和L-天冬氨酸两种物质经过四步酶促反应生成。最后在泛酸合成酶的催化下由ATP提供能量连接β-Ala和泛解酸生成维生素B5。利用E.coli泛酸缺陷型菌株证明了泛酸的生物合成途径是L-Val生物合成的分支。因此如果微生物失去合成L-Val、β-Ala或半胱氨酸的能力也将无法合
莽草酸生物合成途径
糖酵解产生的磷酸烯醇式丙酮酸(PEP)和戊糖磷酸途径产生的D-赤藓糖-4-磷酸作用形成中间产物3-脱氧-D-阿拉伯庚酮糖酸-7-磷酸,进一步环化成重要中间产物莽草酸。莽草酸再与PEP作用,形成3-烯醇丙酮酸莽草酸-5-磷酸,脱去Pi,形成分支酸。分支酸是莽草酸途径的重要枢纽物质,它以后的去向分为两个
植物营养抗逆生理和抗旱叶面肥研究获突破
由西北农林科技大学生命学院博士张立新主持的“氮、钾、甜菜碱提高玉米抗旱性的机理研究和抗旱型叶面肥开发与示范”项目,近日在杨凌通过了由教育部组织的成果鉴定。专家一致认为,该研究达到国际先进水平。 据介绍,氮、钾、甜菜碱调控是提高作物抗旱性的有效途径之一,其效果和作用机理受到植物生理生态和营养
半缩醛的合成途径
半缩醛的合成途径有以下几个:醇和醛之间的亲核加成;醇和共振稳定的半缩醛阳离子的亲核加成;缩醛的部分水解。
脂肪合成新途径被发现!
脂肪主要由甘油三酯(TAGs)构成,是生物储存能量的关键物质,食物充足时生物体能够将多余营养转化为脂肪,储存于脂滴中,以备食物稀缺时提供必要能量。哺乳动物中TAGs的合成是在二酰基甘油(DAG)酰基转移酶(DGATs,位于内质网)的催化下,DAG与脂酰基辅酶A反应生成的,而DGAT 依赖性 TA
核苷三磷酸的合成途径
一个称为次黄嘌呤的氮基被直接组装到PRPP上。这导致一个核苷酸,称为肌苷一磷酸(IMP)。然后将IMP转化为AMP或GMP的前体。一旦形成AMP或GMP,它们就可以被ATP磷酸化到它们的二磷酸和三磷酸形式。嘌呤合成受腺嘌呤或鸟嘌呤核苷酸对IMP形成的变构抑制,AMP和GMP也竞争性地抑制IMPs的前
核苷酸的合成途径
核苷酸是核糖核酸及脱氧核糖核酸的基本组成单位,是体内合成核酸的前身物。核苷酸随着核酸分布于生物体内各器官、组织、细胞核及细胞质中,并作为核酸的组成成分参与生物的遗传、发育、生长等基本生命活动。生物体内还有相当数量以游离形式存在的核苷酸。三磷酸腺苷在细胞能量代谢中起着主要的作用。体内的能量释放及吸收主
雷帕霉素的合成途径
雷帕霉素由七单位的乙酸盐和七单位的丙酸盐通过聚酮途径合成,所需的O-甲基来自于甲硫氨酸。其实氮源时莽草酸经还原后的衍生物,从莽草酸形成环己烷衍生物的过程中保留了环己烷基的完整性。赖氨酸先脱氨幻化形成羧酸哌啶,再由羧酸哌啶与聚酮乙酰键和酰胺键连接,形成了雷帕霉素的初始结构。
关于嘌呤合成代谢途径介绍
腺嘌呤合成代谢包括从头合成途径和补救合成途径。从头合成途径主要在肝脏,以磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位为原料。嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。嘌呤核苷酸的补救合成主要是体内某些组织器官如脑、骨髓等缺乏从头合成嘌呤核苷酸的酶系,
细胞中的DNA合成途径
细胞中的DNA合成有两条途径:一条途径是生物合成途径(“D途径”),即由氨基酸及其他小分子化合物合成核苷酸,为DNA分子的合成提供原料。在此合成过程中,叶酸作为重要的辅酶参与这一过程,而HAT培养液中氨基蝶呤是一种叶酸的拮抗物,可以阻断DNA合成的“D途径”。另一条途径是应急途径或补救途径(“S途径
雷帕霉素的合成途径
雷帕霉素由七单位的乙酸盐和七单位的丙酸盐通过聚酮途径合成,所需的O-甲基来自于甲硫氨酸。其实氮源时莽草酸经还原后的衍生物,从莽草酸形成环己烷衍生物的过程中保留了环己烷基的完整性。赖氨酸先脱氨幻化形成羧酸哌啶,再由羧酸哌啶与聚酮乙酰键和酰胺键连接,形成了雷帕霉素的初始结构。
脂肪酸的合成途径
生物体内由乙酰CoA合成脂肪酸的有:①非线粒体酶系合成途径:即胞浆酶系合成饱和脂肪酸途径。该途径的终产物是软脂酸,故又称为软脂酸合成途径,它是脂肪酸合成的主要途径。②线粒体酶系合成途径:又称饱和脂肪酸碳链延长途径。
赖氨酸的生物合成途径
赖氨酸的生物合成途径是1950年以后逐渐被阐明的。赖氨酸的生物合成途径与其他氨基酸不同,依微生物的种类而异。细菌的赖氨酸生物合成途径需要经过二氨基庚二酸(DAP)合成赖氨酸。酵母、霉菌的赖氨酸生物合成途径,需要经过α-氨基己二酸合成赖氨酸。同样是二氨基庚二酸合成赖氨酸途径,不同的细菌,赖氨酸生物合成
性激素的生物合成途径
合成贮存性激素有共同的生物合成途径:以胆固醇为前体,通过侧链的缩短,先产生21碳的孕酮或孕烯醇酮,继而去侧链后衍变为19碳的雄激素,再通过A环芳香化而生成18碳的雌激素。性激素的代谢失活途径也大致相同,即在肝、肾等代谢器官中形成葡萄糖醛酸酯或硫酸酯等水溶性较强的结合物,然后随尿排出,或随胆汁进入肠道
谷氨酸的合成途径
谷氨酸的生物合成途径大致是:葡萄糖经糖酵解(EMP途径)和己糖磷酸支路(HMP途径)生成丙酮酸,再氧化成乙酰辅酶A(乙酰COA),然后进入三羧酸循环,生成α-酮戊二酸。α-酮戊二酸在谷氨酸脱氢酶的催化及有NH4+存在的条件下,生成谷氨酸。当生物素缺乏时,菌种生长十分缓慢;当生物素过量时,则转为乳酸发
糖原的合成途径分别都有哪些?
(1)葡萄糖通过α-1,4糖苷键和α-1,6糖苷键相连而成的具有高度分支的聚合物。(2)糖原主要分为肝糖原和肌糖原;(3)糖原是可以迅速动用的葡萄糖储备。肌糖原分解可供肌肉收缩的需要,肝糖原分解提供血糖。短期饥饿后,血糖浓度的恒定主要靠肝糖原的分解。肝脏有葡萄糖-6-磷酸酶使肝糖原分解,肌肉组织缺乏
简述雷帕霉素的合成途径
雷帕霉素由七单位的乙酸盐和七单位的丙酸盐通过聚酮途径合成,所需的O-甲基来自于甲硫氨酸。其实氮源时莽草酸经还原后的衍生物,从莽草酸形成环己烷衍生物的过程中保留了环己烷基的完整性。赖氨酸先脱氨幻化形成羧酸哌啶,再由羧酸哌啶与聚酮乙酰键和酰胺键连接,形成了雷帕霉素的初始结构。
懒氨酸的主要合成途径介绍
赖氨酸的生物合成途径是1950年以后逐渐被阐明的。赖氨酸的生物合成途径与其他氨基酸不同,依微生物的种类而异。细菌的赖氨酸生物合成途径需要经过二氨基庚二酸(DAP)合成赖氨酸。酵母、霉菌的赖氨酸生物合成途径,需要经过α-氨基己二酸合成赖氨酸。同样是二氨基庚二酸合成赖氨酸途径,不同的细菌,赖氨酸生物合成
刀豆氨酸的合成代谢途径
1982年Rosenthal[64]利用同位素标记法发现在Jack Bean,Canavalia ensiformis(L.)植物中L-刀豆氨酸(L-canavanine)的合成是由L-副刀豆氨酸(L-canaline)进过中间物尿素型高丝氨酸(O-ureido-L-homoserine)形成的
环鸟苷酸的合成和降解途径介绍
合成途径鸟苷酸环化酶(guanylate cyclase, GC)可将三磷酸鸟苷(guanosine triphosphate, GTP)催化为cGMP。其中,与膜受体结合的鸟苷酸环化酶和可以在膜受体与肽类激素(如心房钠尿肽)结合后被激活。而胞质中的游离鸟苷酸环化酶可被NO激活进而合成cGMP。降解
刀豆氨酸的合成代谢途径
1982年Rosenthal[64]利用同位素标记法发现在Jack Bean,Canavalia ensiformis(L.)植物中L-刀豆氨酸(L-canavanine)的合成是由L-副刀豆氨酸(L-canaline)进过中间物尿素型高丝氨酸(O-ureido-L-homoserine)形成的。这
细胞分裂素的合成途径
一般认为,细胞分裂素在根尖、萌发着的种子和发育着的果实、种子处合成,但随着研究的深入,发现茎端也能合成细胞分裂素。细胞分裂素生物合成是在细胞的微粒体中进行的。1、前体:甲羟戊酸和AMP2、途径:异戊烯转移酶(isopentenyl transferase,IPT酶)催化下,把二甲烯丙基二磷酸(dim