太赫兹波与太赫兹技术

太赫兹波是指频率介于0.1~10THz之间的电磁波,其波长范围为 0.03~3 mm。太赫兹波在电磁波谱中的位置位于微波和红外辐射之间,故对其研究手段由电子学理论逐渐过渡为光子学理论。20世纪90年代以前,人们对太赫兹波的认识非常有限。近年来,随着激光技术、量子阱技术和半导体技术的发展,为太赫兹脉冲的产生提供了稳定、可靠的激发光源,使太赫兹辐射的产生机理、检测技术和应用技术等方面的研究得到蓬勃发展。由于太赫兹波在电磁波谱中所处的特殊位置,因而其具有许多优越的性质,从而在天文、生物、化学等领域有着非常重要的学术和应用价值。尤其在军事和安全领域,太赫兹技术更是有着广阔的应用前景。太赫兹技术因得到了各国政府和研究机构的高度重视,成为了当前国防和反恐中的重点研究项目。1太赫兹波的特性太赫兹波综合了电子学和光子学的优越性能,具有很多不同于其他电磁波的特殊性质。也正是这些特性,使之成为当前科技界最热闹的前沿领域之一。指 纹 特 性物质的太赫......阅读全文

太赫兹波与太赫兹技术

太赫兹波是指频率介于0.1~10THz之间的电磁波,其波长范围为 0.03~3 mm。太赫兹波在电磁波谱中的位置位于微波和红外辐射之间,故对其研究手段由电子学理论逐渐过渡为光子学理论。20世纪90年代以前,人们对太赫兹波的认识非常有限。近年来,随着激光技术、量子阱技术和半导体技术的发展,为太赫兹脉冲

毫米波与太赫兹技术

今日推荐文章作者为东南大学毫米波国家重点实验室主任、IEEE Fellow 著名毫米波专家洪伟教授,本文选自《毫米波与太赫兹技术》,发表于《中国科学: 信息科学》2016 年第46卷第8 期——《信息科学与技术若干前沿问题评述专刊》,射频百花潭配图。引言随着对电磁波谱的不断探索, 人类对电子学和光学

毫米波与太赫兹技术(一)

今日推荐文章作者为东南大学毫米波国家重点实验室主任、IEEE Fellow 著名毫米波专家洪伟教授,本文选自《毫米波与太赫兹技术》,发表于《中国科学:信息科学》2016 年第46卷第8 期——《信息科学与技术若干前沿问题评述专刊》。摘要:本文概要介绍了毫米波与太赫兹技术的研究现状,并根据国内外发展趋

毫米波与太赫兹技术(四)

4.2、太赫兹天线随着对太赫兹技术研究的深入,太赫兹天线也逐渐成为研究热点。太赫兹频段相比微波毫米波频段有着更高的工作频率,对应的波长也短很多。由于天线尺寸与波长的相关性,太赫兹天线具有尺寸小的天然优势,但也对加工制作带来了挑战。类似于低频段通信的天线需求,太赫兹天线也分全向天线、定向天线以及多波束

毫米波与太赫兹技术(二)

1.3 硅基毫米波芯片硅基工艺传统上以数字电路应用为主。随着深亚微米和纳米工艺的不断发展,硅基工艺特征尺寸不断减小,栅长的缩短弥补了电子迁移率的不足,从而使得晶体管的截止频率和最大振荡频率不断提高,这使得硅工艺在毫米波甚至太赫兹频段的应用成为可能。国际半导体蓝图协会(International

毫米波与太赫兹技术(三)

1.3 窄带太赫兹连续波源窄带太赫兹辐射源的目标是产生连续的线宽很窄的太赫兹波。常用的方法包括:a) 利用电子学器件设计振荡器,尤其是以亚毫米波振荡器为基础,提高振荡器的工作频率,以设计实现适合太赫兹频段的振荡器。由于这一特点,目前报道的太赫兹源的工作频率主要集中在较低的太赫兹频段。但是,在此基

太赫兹波的应用

太赫兹(THz)波是介于微波和红外之间的一种相干电磁辐射,是人类目前尚未完全开发的电磁波谱“空隙区”。由于其频率范围处于电子学和光子学的交叉区域,太赫兹波的理论研究处在经典理论和量子跃迁理论的过渡区,其性质表现出一系列不同于其他电磁辐射的特殊性,从而具有许多方面不同的应用。主要应用在光谱、成像和通信

太赫兹技术

太赫兹辐射是0.1~10THz的电磁辐射, 从频率上看, 在无线电波和光波, 毫米波和红外线之间; 从能量上看, 在电子和光子之间· 在电磁频谱上,太赫兹波段两侧的红外和微波技术已经非常成熟,但是太赫兹技术基本上还是一个空白,其原因是在此频段上,既不完全适合用光学理论来处理,也不完全适合微波的理论来

verTera-连续波太赫兹扩展

verTera 连续波太赫兹扩展独特的verTera升级扩展版本的问世,使VERTEX 80v成为世界上第一台将傅立叶变换红外光谱与连续波太赫兹联用的的光谱仪。除了具有VERTEX 80v变换红外的性能和灵活性,verTera升级扩展版本还可以实现个位数的波数范围、或例如最高光谱分辨率这样的顶级技术

太赫兹

太赫兹(Tera Hertz,THz)是波动频率单位之一,又称为太赫,或太拉赫兹。等于1,000,000,000,000Hz,通常用于表示电磁波频率。太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。历史早期

太赫兹技术突破

2016年10月28日消息,中国航天科工集团23所已获得中国首幅太赫兹波段外场SAR图像,太赫兹波段雷达成像关键技术取得突破性成果。通过首幅太赫兹波段外场SAR图像,主要技术指标和成像算法得到了试验验证,为太赫兹雷达工程应用奠定了技术基础。不过,由于高功率太赫兹辐射源发展水平的限制,太赫兹雷达系统成

新技术实现太赫兹波“绕障”传输

科技日报北京4月11日电 (记者张梦然)当前无线通信系统依靠微波辐射来承载数据,未来数据传输标准将利用太赫兹波。与微波不同,太赫兹信号可被大多数固体物体阻挡。在《通信工程》杂志上发表的一项新研究中,美国布朗大学和莱斯大学研究人员描述了他们如何通过弯曲光线来绕过这些固体障碍,从而解决未来无线通信的这一

无源太赫兹太赫兹技术发展新高峰

2016年2月27日,国家创新与发展战略研究会在上海虹桥示范馆举办了“当代科技创新成果展”。举办展会的宗旨是服务“中国制造2025战略”,为世界级的创新科技企业提供展示平台。此次成果展,对参展资格要求十分严苛:其技术或产品处于世界领先水平;其技术或产品对中国产业具有升级效果;可能对未来世界做出贡献的

太赫兹波对人体的作用

1、生物医学上太赫兹技术在生物医学方面的应用,生物大分子相互作用是重大生命现象与病变产生的关键动因,而太赫兹光子能量覆盖了生物大分子空间构象的能级范围。该频段包含了其他电磁波段无法探测到的直接代表生物大分子功能的空间构象等重要信息。因此,可以发展一种利用太赫兹探测和干预生物大分子相互作用过程的新理论

用太赫兹波进行光学计算

Alexey Shuvaev, Andrei Pimenov, Florian Aigner, Georgy Astakhov, Mathias Mühlbauer, Christoph Brüne, Hartmut Buhmann and Laurens W. Molenkamp通过导通光

太赫兹技术应用简介

太赫兹波(THz波)是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。一百多年前,在红外天文学上人们曾提到太赫兹,但在科研和民用方面很少有人触及。在微波、可见光、红外等技术被广泛应用的情况下,太赫兹发展滞后的主要原因在于缺少探测器和发射源,直到近十几

太赫兹技术应用简介

太赫兹波(THz波)是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。一百多年前,在红外天文学上人们曾提到太赫兹,但在科研和民用方面很少有人触及。在微波、可见光、红外等技术被广泛应用的情况下,太赫兹发展滞后的主要原因在于缺少探测器和发射源,直到近十几

太赫兹技术应用简介

  太赫兹波(THz波)是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。一百多年前,在红外天文学上人们曾提到太赫兹,但在科研和民用方面很少有人触及。在微波、可见光、红外等技术被广泛应用的情况下,太赫兹发展滞后的主要原因在于缺少探测器和发射源,直到近

太赫兹雷达技术(二)

2.1.2 真空电子学太赫兹雷达太赫兹电真空器件以其高功率输出优势在太赫兹雷达系统发展中具有重要意义。最早关于真空电子学太赫兹雷达的报道是1988年马萨诸塞大学的McIntosh R E等人基于当时真空器件扩展互作用振荡器(Extended Interaction Oscillator, EIO

太赫兹雷达技术(一)

摘要:太赫兹雷达具有带宽大、分辨率高、多普勒敏感、抗干扰等独特优势,是目标探测领域的重要发展方向。该文首先回顾和介绍了电子学和光学太赫兹雷达系统历史、现状和最新进展,其次对太赫兹雷达目标特性从机理、计算、测量3个方面进行了梳理和概要介绍,同时阐述了太赫兹ISAR、SAR、阵列和孔径编码成像研究状况,

太赫兹雷达技术(四)

太赫兹由于波长短对相对转角要求较小,还可以进行方位-俯仰成像获得横剖面类光学图像,用于目标散射中心诊断与分析。美国STL实验室基于远红外激光器和QCL分别实现了1.5 THz和2.4 THz方位俯仰成像[44,73]。国防科技大学针对目标成像结果中散射点数目急剧增加和目标散射分布呈现出的块结构分布特

太赫兹雷达技术(五)

5.2 安检反恐应用近年来,国际国内反恐维稳形式呈现出袭击领域多、危害程度大、影响范围广的复杂态势,在公共安全场所对人员进行安检是预防公共安全事件最有效手段之一。目前以美国L3系统为代表的毫米波成像仪成熟度高且已部署应用,但机械扫描时需要人体静止驻留耗时略长,且阵元数目多、成本较高。太赫兹雷达具有分

太赫兹雷达技术(三)

3.2 目标散射特性建模与计算目标散射特性建模与计算是获取目标散射特性的有效方法。太赫兹频段实际目标一般应视为粗糙表面目标,表面细微结构散射较强不可忽略,且是超电大尺寸目标,这是太赫兹频段目标散射特性建模与计算的瓶颈问题。研究太赫兹频段目标特性可采用两种技术途径:一种是由微波/毫米波向上扩展,另一种

太赫兹特点

太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。它之所以能够引起人们广泛的关注、有如此之多的应用,首先是因为物质的太赫兹光谱(包括透射谱和反射谱)包含着非常丰富的物理和化学信息,所以研究物质在该波段的光谱对

太赫兹通信

短亦有短的好,开辟战术通信新领域。在无线通信发展百余年后的今天,军事通信领域500MHz~5GHz频段资源已日趋稀缺,未来量子通信技术虽值得憧憬,但目前仍有些遥不可及。而太赫兹这一曾被“遗忘”的波段,集成了微波通信与光通信的优点,具有传输速率高、容量大、方向性强、安全性高及穿透性好等诸多特性,在军事

太赫兹简介

THz波(太赫兹波)或成为THz射线(太赫兹射线)是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将统称为远红外射线。太赫兹波是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。实际上,早在一百年前,就有科学工作者涉及过这一波段。在1896

太赫兹成像

远距离穿墙术,铸就反恐作战新利器。如果问一下驻伊美军最怕的是什么,那答案肯定是路边炸弹,防不胜防的路边炸弹,成了驻伊美军不寒而栗的“头号杀手”,以至于让美国海军陆战队司令迈克尔·哈吉认为:“这种相对低级的武器将成为未来战争的一个标志。”在美军撤离伊拉克之前路边炸弹造成的伤亡一度不绝于耳。与此同时,不

太赫兹芯片

太赫兹芯片是一种全新的微芯片,是一种信号放大器,运行速度达到了1太赫兹,创下了最新的吉尼斯世界纪录。2018年4月23日,由中国电科13所研制的首款国产太赫兹成像芯片在首届数字中国建设峰会上正式发布。研发历史2014年11月,诺思罗普-格鲁曼公司芯片创造了新的吉尼斯世界纪录研发出了太赫兹芯片,能够达

太赫兹特点

特点编辑人们关注THz技术的原因是THz射线普遍存在,是人们认识自然界的有效线索和工具。但是相对于其他波段的电磁波比如红外和微波,对它的认识和应用非常匮乏。其次,THz射线有它自身的特点。THz 脉冲的典型脉宽在皮秒量级,不但可以方便地进行时间分辨的研究,而且通过取样测量技术,能够有效地抑制远红

太赫兹光谱

太赫兹波,又称远红外辐射波,具备非常卓越的特性。许多常见的材料和组织对于太赫兹波都是半透明的,并表现出“太赫兹特性”,使得利用太赫兹波鉴别和分析样品成为可能。太赫兹光谱技术具备非常广泛的应用前景,比如在聚合物多晶型研究、聚合物研发、无机化学、气体光谱、固态物理、半导体物理以及药品研发等相关领域都可以