多孔核心光子晶体光纤引导偏振保持太赫兹波
光子晶体光纤(PCF)也称为微结构光纤(MOF) ,是一类不同类型的光纤,特别适用于传感,生物医学成像,时域光谱学,安全性,DNA杂交和癌症检测领域的应用,并在光通信。 与传统光纤不同,PCF提供高双折射和可控色散。实芯PCF经历大量材料损失,不适用于太赫兹信号传输,而空心PCF限制电磁波的传播距离较短,并具有与光纤的直径和弯曲半径成反比的高的弯曲损耗。 由于这些不合需要的特征已经减缓了对固态和中空芯PCF的接受度,多孔芯纤维已经被开发出来。我们在阿德莱德大学的团队专注于多孔芯PCF,其中包含工程数量的微结构气孔,允许设计人员控制全球光纤参数,如气孔大小,间距(中心到中心之间的距离气孔),芯径和气孔形状。 反过来,诸如有效材料损失,双折射,分散,约束损失,数值孔径和其它模态特性的操作参数可以通过设计获得,如应用要求所规定的。PCF作为波导波导的主要功能是以期望的波长传输具有尽可能低的传输损......阅读全文
太赫兹
太赫兹(Tera Hertz,THz)是波动频率单位之一,又称为太赫,或太拉赫兹。等于1,000,000,000,000Hz,通常用于表示电磁波频率。太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。历史早期
科学家将太赫兹波加速电子能量提升近一个量级
原文地址:http://news.sciencenet.cn/htmlnews/2023/7/504934.shtm7月13日,《自然-光子学》发表中国科学院院士、(以下简称上海光机所)研究员李儒新团队在太赫兹波电子加速领域取得的重要进展。该团队基于上海光机所新一代超强超短脉冲激光综合实验装置,利用
高性能的非制冷“毫米波与太赫兹波”探测技术
毫米波(名词解释⏬)与太赫兹波(名词解释⏬)探测技术在通信、安全、生物检测、频谱分析等领域有着广泛的应用。它们是将承载着毫米波与太赫兹波的光信息转变为电信号的核心技术。 高灵敏度、宽波段、快速响应及面阵可延展性的非制冷探测技术一直是目前所急需发展的方向。它们是一系列毫米波与太赫兹波相关系统,如
铌酸锂晶体中的交叉偏振布里渊增益特性首次被揭示
近日,电子科技大学信息与通信工程学院光纤传感与通信教育部重点实验室研究团队,联合美国科罗拉多大学博尔德分校,在《自然—光子学》上发表研究论文,首次系统揭示了铌酸锂晶体中的交叉偏振布里渊增益特性,并展示了其与二阶非线性的高效耦合机制,从而成功开发出三种创新性光子器件,可为下一代光通信、精密测量和量
青岛太赫兹测试技术国际领先-核心器件打破垄断
导读: 记者4月10日从青岛市科技局获悉,青岛市中电科仪器仪表有限公司研发的“毫米波与太赫兹(50GHz~500GHz)测量系统”项目已打破了核心技术的国外垄断,步入国际领先水平。 记者4月10日从青岛市科技局获悉,青岛市中电科
青岛太赫兹测试技术国际领先-核心器件打破垄断
记者4月10日从青岛市科技局获悉,青岛市中电科仪器仪表有限公司研发的“毫米波与太赫兹(50GHz~500GHz)测量系统”项目已打破了核心技术的国外垄断,步入国际领先水平。 中电仪器是是我国大型科技军工集团中国电科在青岛市设立的全资子公司,其研制开发的太赫兹测试仪器已广泛应用于清华、北邮、华为等国
青岛太赫兹测试技术国际领先-核心器件打破垄断
4月10日从青岛市科技局获悉,青岛市中电科仪器仪表有限公司研发的“毫米波与太赫兹(50GHz~500GHz)测量系统”项目已打破了核心技术的国外垄断,步入国际领先水平。 中电仪器是是我国大型科技军工集团中国电科在青岛市设立的全资子公司,其研制开发的太赫兹测试仪器已广泛应用于清华、北邮、华为等
大模场光子晶体光纤研制成功
今天,记者从中科院上海光机所获悉,该所陈丹平与胡丽丽率领的石英光纤材料课题组在大模场有源光子晶体光纤的研制方面取得了重要进展,成功制备获得了纤芯直径大于50微米、NA(数值孔径)小于0.03的大芯径光子晶体光纤,并在皮秒脉冲放大器中实现平均功率超过百瓦、单脉冲能量大于微焦耳量级的高光束质量输出。
高非线性石英光子晶体光纤研制取得进展
中国科学院上海光学精密机械研究所研究员廖梅松带领非线性光纤课题组刘垠垚、吴达坤等人,在高非线性光子晶体光纤的研制方面取得了新进展。 由于高非线性光子晶体光纤具有普通阶跃型光纤所不具备的特殊色散和高非线性,是产生超连续谱激光的核心器件。超连续谱是一种具有超宽的光谱和高度方向性的高亮度宽带光源,在
西安光机所太赫兹超材料功能器件研究获进展
导读: 陈徐研究了一种利用石墨烯构建的三维太赫兹超材料结构,通过与太赫兹波的相互作用,可以实现多个等离子体共振模式激发。 3月19日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室研究员范文慧课题组,在太赫
基于有机晶体新型太赫兹发射和探测器
基于有机晶体新型太赫兹发射和探测器 基于有机晶体的新型太赫兹发射和探测器!(种类齐全) 瑞士Rainbow Photonics 公司推出太赫兹发射和探测器;它主要是基于有机晶体产生和探测太赫兹波;突破传统的太赫兹光电导天线产生太赫兹的模式。 太赫兹、太赫兹源、太赫兹发射器、太赫兹探测器、有机晶体,太
搭建太赫兹时域光谱仪THz-TDS的一些经验总结
一,基于太赫兹光电导天线的THz-TDS如果你们实验室已经具备了飞秒激光器,飞秒光纤激光器,或是钛蓝宝石飞秒激光器都可以,振荡级放大级出光都行,只要脉冲宽度在100fs量级。你就可以以一个低成本的价格搭建一套太赫兹时域光谱仪系统。搭建常规的基于太赫兹光电导天线的THz-TDS,系统对fs激光器的要求
物理所等澄清双色场太赫兹辐射方案推广及物理机制
太赫兹波通常指频率处于0.1THz到10THz的电磁波。由于波段独特,太赫兹波在多各领域具有应用潜力,但如何产生可调谐的强太赫兹辐射源是一个长期存在的难题。近三十年的研究表明,等离子体可以把强激光转化成强太赫兹辐射源。其中,2000年提出的“双色场方案”,由于转换效率高和技术简单等优点,得到最为
闪存技术有望带来太赫兹频率光子芯片应用案例一
闪存技术有望带来太赫兹频率光子芯片根据科技日报消息,据美国《每日科学》网站报道,以色列科学家利用金属氧化氮氧化硅(MONOS)结构设计出一种新型集成光子回路制备技术。该技术在微芯片上使用闪存技术,有望使体型更小、运行速度更快的光子芯片成为现实,运算频率达太赫兹量级,从而将目前标准的8—16千兆赫计算
基于光学及光子学的太赫兹(THz)辐射源
太赫兹波(Tera-Hertz Wave,频率在0.1—10THz范围)是光子学技术与电子学技术、宏观与微观的过渡区域,是一个具有科学研究价值但尚未开发的电磁辐射区域。如何有效的产生高功率(高能量)、高效率且能在室温下稳定运转、宽带可调的THz辐射源,已经成为科研工作者追求的目标。根据THz辐射
太赫兹光谱
太赫兹波,又称远红外辐射波,具备非常卓越的特性。许多常见的材料和组织对于太赫兹波都是半透明的,并表现出“太赫兹特性”,使得利用太赫兹波鉴别和分析样品成为可能。太赫兹光谱技术具备非常广泛的应用前景,比如在聚合物多晶型研究、聚合物研发、无机化学、气体光谱、固态物理、半导体物理以及药品研发等相关领域都可以
太赫兹特点
特点编辑人们关注THz技术的原因是THz射线普遍存在,是人们认识自然界的有效线索和工具。但是相对于其他波段的电磁波比如红外和微波,对它的认识和应用非常匮乏。其次,THz射线有它自身的特点。THz 脉冲的典型脉宽在皮秒量级,不但可以方便地进行时间分辨的研究,而且通过取样测量技术,能够有效地抑制远红
太赫兹技术
太赫兹辐射是0.1~10THz的电磁辐射, 从频率上看, 在无线电波和光波, 毫米波和红外线之间; 从能量上看, 在电子和光子之间· 在电磁频谱上,太赫兹波段两侧的红外和微波技术已经非常成熟,但是太赫兹技术基本上还是一个空白,其原因是在此频段上,既不完全适合用光学理论来处理,也不完全适合微波的理论来
太赫兹成像
远距离穿墙术,铸就反恐作战新利器。如果问一下驻伊美军最怕的是什么,那答案肯定是路边炸弹,防不胜防的路边炸弹,成了驻伊美军不寒而栗的“头号杀手”,以至于让美国海军陆战队司令迈克尔·哈吉认为:“这种相对低级的武器将成为未来战争的一个标志。”在美军撤离伊拉克之前路边炸弹造成的伤亡一度不绝于耳。与此同时,不
太赫兹简介
THz波(太赫兹波)或成为THz射线(太赫兹射线)是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将统称为远红外射线。太赫兹波是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。实际上,早在一百年前,就有科学工作者涉及过这一波段。在1896
太赫兹应用
太赫兹成像技术和太赫兹波谱技术由此构成了太赫兹应用的两个主要关键技术。同时,由于太赫兹能量很小,不会对物质产生破坏作用,所以与X射线相比更具有优势。THz时域光谱技术目前已经开始商业化运作,世界范围内已经有多家企业开始生产商用THz时域光谱仪,主要是中国,美国,欧洲和日本的厂家。THz时域光谱技术的
太赫兹芯片
太赫兹芯片是一种全新的微芯片,是一种信号放大器,运行速度达到了1太赫兹,创下了最新的吉尼斯世界纪录。2018年4月23日,由中国电科13所研制的首款国产太赫兹成像芯片在首届数字中国建设峰会上正式发布。研发历史2014年11月,诺思罗普-格鲁曼公司芯片创造了新的吉尼斯世界纪录研发出了太赫兹芯片,能够达
太赫兹雷达
高精度宽频带,让隐身兵器无所遁形。众所周知,雷达主要靠接收目标的反射信号来发现目标。如果目标表面能使雷达波被吸收或散射,就可大大减小被发现的概率,从而达到隐身的目的。因此,通常所说的隐身技术主要是靠形状、吸波涂层、形成等离子云吸收或改变雷达波的传播方向来实现隐身的。在隐身技术应用之后,常规的窄带微波
太赫兹特点
太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。它之所以能够引起人们广泛的关注、有如此之多的应用,首先是因为物质的太赫兹光谱(包括透射谱和反射谱)包含着非常丰富的物理和化学信息,所以研究物质在该波段的光谱对
太赫兹通信
短亦有短的好,开辟战术通信新领域。在无线通信发展百余年后的今天,军事通信领域500MHz~5GHz频段资源已日趋稀缺,未来量子通信技术虽值得憧憬,但目前仍有些遥不可及。而太赫兹这一曾被“遗忘”的波段,集成了微波通信与光通信的优点,具有传输速率高、容量大、方向性强、安全性高及穿透性好等诸多特性,在军事
太赫兹历史
太赫兹(Tera Hertz,THz)是波动频率单位之一,又称为太赫,或太拉赫兹。等于1,000,000,000,000Hz,通常用于表示电磁波频率。太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。[1]
南开大学:研发出石墨烯泡沫全能型太赫兹隐身材料
太赫兹技术被美国评为“改变未来世界的十大技术”之一,被日本列为“国家支柱十大重点战略目标”之首。近日,南开大学黄毅教授和陈永胜教授研究团队创造性的提出了利用石墨烯泡沫作为太赫兹隐身材料的设想。近期,《先进功能材料》(Advanced Functional Materials)在线发表了南开大
创纪录!我国科学家发布6G核心技术创新成果
位于江苏南京的紫金山实验室日前发布了一项最新原创成果——360-430GHz太赫兹100-200Gbps实时无线传输通信实验系统,创造出目前世界太赫兹无线通信最高实时传输纪录。 据了解,紫金山实验室采用光子太赫兹技术实现此次突破。太赫兹无线通信被公认为是6G移动通
创纪录!我国科学家发布6G核心技术创新成果
位于江苏南京的紫金山实验室日前发布了一项最新原创成果——360-430GHz太赫兹100-200Gbps实时无线传输通信实验系统,创造出目前世界太赫兹无线通信最高实时传输纪录。 据了解,紫金山实验室采用光子太赫兹技术实现此次突破。太赫兹无线通信被公认为是6G移动通
基于有机晶体新型太赫兹发射和探测器特点
主要特点:基于飞秒泵浦脉冲光整流产生太赫兹基于非线性光学混频产生太赫兹泵浦波长:1.2-1.6 um; 0.7-0.8 um 可用高效的电光太赫兹探测器 主要应用:太赫兹成像及光谱太赫兹检测