高性能的非制冷“毫米波与太赫兹波”探测技术

毫米波(名词解释⏬)与太赫兹波(名词解释⏬)探测技术在通信、安全、生物检测、频谱分析等领域有着广泛的应用。它们是将承载着毫米波与太赫兹波的光信息转变为电信号的核心技术。 高灵敏度、宽波段、快速响应及面阵可延展性的非制冷探测技术一直是目前所急需发展的方向。它们是一系列毫米波与太赫兹波相关系统,如高速宽带通讯网络、深空探测、安全检测、物质成分分析等的基石。 然而,传统的毫米波与太赫兹波探测技术或受制于: 低灵敏度, 不具备快速响应, 不具备宽波段响应, 不是基于芯片级半导体而无法延展至面阵列, 无法满足非制冷和热电制冷工作需求。 传统毫米波与太赫兹探测技术目前市场上主要的非制冷毫米波与太赫兹波探测器件是基于高来(Golay cell)、热释电(pyroelectrics)和测辐射热计(bolometer)的热探测元件,以及基于肖特基的光子探测元件。然而它们受制于低灵敏度、慢响应速度,窄波段探测,无法扩......阅读全文

毫米波与太赫兹技术

今日推荐文章作者为东南大学毫米波国家重点实验室主任、IEEE Fellow 著名毫米波专家洪伟教授,本文选自《毫米波与太赫兹技术》,发表于《中国科学: 信息科学》2016 年第46卷第8 期——《信息科学与技术若干前沿问题评述专刊》,射频百花潭配图。引言随着对电磁波谱的不断探索, 人类对电子学和光学

毫米波与太赫兹技术(一)

今日推荐文章作者为东南大学毫米波国家重点实验室主任、IEEE Fellow 著名毫米波专家洪伟教授,本文选自《毫米波与太赫兹技术》,发表于《中国科学:信息科学》2016 年第46卷第8 期——《信息科学与技术若干前沿问题评述专刊》。摘要:本文概要介绍了毫米波与太赫兹技术的研究现状,并根据国内外发展趋

毫米波与太赫兹技术(四)

4.2、太赫兹天线随着对太赫兹技术研究的深入,太赫兹天线也逐渐成为研究热点。太赫兹频段相比微波毫米波频段有着更高的工作频率,对应的波长也短很多。由于天线尺寸与波长的相关性,太赫兹天线具有尺寸小的天然优势,但也对加工制作带来了挑战。类似于低频段通信的天线需求,太赫兹天线也分全向天线、定向天线以及多波束

毫米波太赫兹波导法兰定义

Waveguide & Flange DesignationsThis reference is about rectangular electromagnetic waveguides at millimeter wave / THz frequencies. The table belo

毫米波与太赫兹技术(二)

1.3 硅基毫米波芯片硅基工艺传统上以数字电路应用为主。随着深亚微米和纳米工艺的不断发展,硅基工艺特征尺寸不断减小,栅长的缩短弥补了电子迁移率的不足,从而使得晶体管的截止频率和最大振荡频率不断提高,这使得硅工艺在毫米波甚至太赫兹频段的应用成为可能。国际半导体蓝图协会(International

毫米波与太赫兹技术(三)

1.3 窄带太赫兹连续波源窄带太赫兹辐射源的目标是产生连续的线宽很窄的太赫兹波。常用的方法包括:a) 利用电子学器件设计振荡器,尤其是以亚毫米波振荡器为基础,提高振荡器的工作频率,以设计实现适合太赫兹频段的振荡器。由于这一特点,目前报道的太赫兹源的工作频率主要集中在较低的太赫兹频段。但是,在此基

加速发展的毫米波/太赫兹频域(二)

II 微加工制造技术真空电子器件最大的问题是手工制造和对中,尚未实现批量制造技术。要实现毫米波和太赫兹频段的开拓,必须解决真空电子器件的批量制造问题。真空电子器件在历史发展上,本来就属于批量制造产品,否则它也不可能在上世纪构建完整的信息社会。当时的小型化三、四极管都是年产几千万支的产品。显示器件(C

加速发展的毫米波/太赫兹频域(一)

由于微波频段的拥挤,近年来国内外信息技术界都更加关注毫米波和太赫兹频域的利用和发展[1-3]。毫米波频域的应用可追朔到上世纪70年代,美国Milstar通信卫星正式使用Ka波段毫米波技术,使毫米波技术应用取得突破。近年来,高速数据通信和5G移动通信的发展,要求更高的工作频率和更宽的频带宽度。促使我们

太赫兹波与太赫兹技术

太赫兹波是指频率介于0.1~10THz之间的电磁波,其波长范围为 0.03~3 mm。太赫兹波在电磁波谱中的位置位于微波和红外辐射之间,故对其研究手段由电子学理论逐渐过渡为光子学理论。20世纪90年代以前,人们对太赫兹波的认识非常有限。近年来,随着激光技术、量子阱技术和半导体技术的发展,为太赫兹脉冲

高性能的非制冷“毫米波与太赫兹波”探测技术

  毫米波(名词解释⏬)与太赫兹波(名词解释⏬)探测技术在通信、安全、生物检测、频谱分析等领域有着广泛的应用。它们是将承载着毫米波与太赫兹波的光信息转变为电信号的核心技术。  高灵敏度、宽波段、快速响应及面阵可延展性的非制冷探测技术一直是目前所急需发展的方向。它们是一系列毫米波与太赫兹波相关系统,如

3D打印毫米波太赫兹无源器件(三)

4. Challenges and Solutions for 3D Printed MmWave and THz DevicesThe two dominantly influential factors on the performance of 3D printed mmWave an

3D打印毫米波太赫兹无源器件(一)

Bing Zhang,1 Wei Chen,2 Yanjie Wu,3 Kang Ding,4 and Rongqiang Li51College of Electronics and Information Engineering, Sichuan University, Chengdu 6100

3D打印毫米波太赫兹无源器件(二)

2. History of the 3D Printing TechnologyGenerally, the 3D printing technologies could be categorized as binding and depositing in terms of process

太赫兹波的应用

太赫兹(THz)波是介于微波和红外之间的一种相干电磁辐射,是人类目前尚未完全开发的电磁波谱“空隙区”。由于其频率范围处于电子学和光子学的交叉区域,太赫兹波的理论研究处在经典理论和量子跃迁理论的过渡区,其性质表现出一系列不同于其他电磁辐射的特殊性,从而具有许多方面不同的应用。主要应用在光谱、成像和通信

verTera-连续波太赫兹扩展

verTera 连续波太赫兹扩展独特的verTera升级扩展版本的问世,使VERTEX 80v成为世界上第一台将傅立叶变换红外光谱与连续波太赫兹联用的的光谱仪。除了具有VERTEX 80v变换红外的性能和灵活性,verTera升级扩展版本还可以实现个位数的波数范围、或例如最高光谱分辨率这样的顶级技术

太赫兹波对人体的作用

1、生物医学上太赫兹技术在生物医学方面的应用,生物大分子相互作用是重大生命现象与病变产生的关键动因,而太赫兹光子能量覆盖了生物大分子空间构象的能级范围。该频段包含了其他电磁波段无法探测到的直接代表生物大分子功能的空间构象等重要信息。因此,可以发展一种利用太赫兹探测和干预生物大分子相互作用过程的新理论

用太赫兹波进行光学计算

Alexey Shuvaev, Andrei Pimenov, Florian Aigner, Georgy Astakhov, Mathias Mühlbauer, Christoph Brüne, Hartmut Buhmann and Laurens W. Molenkamp通过导通光

罗德与施瓦茨将携全新毫米波太赫兹测试方案亮相UCMMT

德与施瓦茨公司是欧洲最大的电子仪器的供应商,凭借八十多年的射频微波行业与四十多年电磁兼容行业的技术创新和经验积累,以其最新的“W”系列产品参与此次会议,参展的主题是“毫米波太赫兹行业发展的理想伙伴”,全面展示其领先的微波、毫米波以及太赫兹测试的产品、系统及技术。UCMMT专注于毫米波至太赫兹范围内的

5G用毫米波,6G/7G用什么?太赫兹波了解一下!

随着商用落地的临近,最近,关于5G的话题也不绝于耳。了解5G的人都知道,5G网络主要有两种频段,一种是sub-6GHz,另一种是毫米波(Millimeter Waves)。实际上,我们现在的LTE网络都基于sub-6GHz,而毫米波技术才是实现畅想5G时代的关键。遗憾的是,在移动通信发展的数

太赫兹波电子加速研究取得进展

  近期,中国科学院上海光学精密机械研究所李儒新、田野和宋立伟团队,在太赫兹波电子加速领域取得重要进展。该团队基于上海光机所新一代超强超短脉冲激光综合实验装置,利用超强超短激光驱动丝波导产生毫焦耳级太赫兹表面波,并采用表面波进行电子加速,解决了高能量太赫兹波产生以及自由空间太赫兹波至波导能量耦合效率

新技术实现太赫兹波“绕障”传输

科技日报北京4月11日电 (记者张梦然)当前无线通信系统依靠微波辐射来承载数据,未来数据传输标准将利用太赫兹波。与微波不同,太赫兹信号可被大多数固体物体阻挡。在《通信工程》杂志上发表的一项新研究中,美国布朗大学和莱斯大学研究人员描述了他们如何通过弯曲光线来绕过这些固体障碍,从而解决未来无线通信的这一

液态水产生太赫兹波被证实

   液态水具有吸收太赫兹光波的性能,因此一直被认为不可能充当太赫兹波的光源。但近日,首都师范大学特聘教授张希成带领团队利用飞秒激光脉冲首次证明,液态水也能产生太赫兹波。发表在最新一期《应用物理快报》上的这一重要研究成果,将为太赫兹波在无线数据传输、工业质量管控及高清成像等领域的广泛应用提供一种全新

高精度调控让太赫兹波“舞动”自如

  1月22日,记者从中国科学院空天信息创新研究院(以下简称空天院)获悉,空天院研究员陈学权、方广有联合南京大学教授吴敬波团队,通过创新技术实现超宽带太赫兹偏振态的高精度动态调控,成果发表于《光学(Optica)》。这一关键技术的突破有助于推动太赫兹在新一代无线通信、文物无损检测、生物微量传感等方向

太赫兹

太赫兹(Tera Hertz,THz)是波动频率单位之一,又称为太赫,或太拉赫兹。等于1,000,000,000,000Hz,通常用于表示电磁波频率。太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。历史早期

国产77吉赫兹毫米波芯片封装天线测距创纪录

记者从中国电科38所获悉,在2月17日召开的第68届国际固态电路会议(ISSCC 2021)上,该所发布了一款高性能77GHz(吉赫兹)毫米波芯片及模组,在国际上首次实现两颗3发4收毫米波芯片及10路毫米波天线单封装集成,探测距离达到38.5米,刷新全球毫米波封装天线最远探测距离纪录。  该款芯片在

国产77吉赫兹毫米波芯片封装天线测距创纪录

从中国电科38所获悉,在2月17日召开的第68届国际固态电路会议(ISSCC 2021)上,该所发布了一款高性能77GHz(吉赫兹)毫米波芯片及模组,在国际上首次实现两颗3发4收毫米波芯片及10路毫米波天线单封装集成,探测距离达到38.5米,刷新全球毫米波封装天线最远探测距离纪录。该款芯片在24毫米

太赫兹技术成6G通信基础-如同5G将频谱资源扩展到毫米波

电子科技大学通信抗干扰技术国家级重点实验室主任李少谦教授表示,太赫兹通信应是6G的新型频谱资源的技术,如同5G将频谱资源扩展到了毫米波。当前,全球纷纷对6G展开方向性研究。6G通信相关上市公司华讯方舟成功做出世界第一块石墨烯太赫兹芯片,太赫兹科技产业重大项目2017年落户雄安。大恒科技深耕太赫兹领域

混合芯片实现太赫兹波与光信号双向转换

瑞士洛桑联邦理工学院(EPFL)和美国哈佛大学科学家合作,研制出一款新型集成芯片,实现了太赫兹波与光信号的相互转换。相关研究成果发表于最新一期《自然·通讯》杂志,有助推动超高速通信、测距、高分辨光谱以及超快计算等领域的发展。太赫兹波与光在频率范围和产生机制上存在显著差异。太赫兹波指频率在0.1太赫兹

太赫兹特点

太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。它之所以能够引起人们广泛的关注、有如此之多的应用,首先是因为物质的太赫兹光谱(包括透射谱和反射谱)包含着非常丰富的物理和化学信息,所以研究物质在该波段的光谱对

太赫兹通信

短亦有短的好,开辟战术通信新领域。在无线通信发展百余年后的今天,军事通信领域500MHz~5GHz频段资源已日趋稀缺,未来量子通信技术虽值得憧憬,但目前仍有些遥不可及。而太赫兹这一曾被“遗忘”的波段,集成了微波通信与光通信的优点,具有传输速率高、容量大、方向性强、安全性高及穿透性好等诸多特性,在军事