Antpedia LOGO WIKI资讯

纳米能源所开发生物全可吸收纯天然材料摩擦纳米发电机

日益增长的神经及心血管疾病对可植入医疗电子器件的需求越来越多,对其工作性能要求也越来越高。此类电子器件主要包括:心内压传感器、心脏起搏器、心脏除颤器、深脑/神经刺激器等。长期的体内植入对可植入医疗器件的体积、稳定性和生物相容性都有很高要求。现有可植入医疗电子器件的电源主要依赖于商业可充电及不可充电电池。此类商用电池在实际使用过程常出现发热、容量减小及内部变性等问题。一旦此类电源达到使用寿命,病人不得不接受二次手术将其从体内取出,该过程会对病人心理及经济带来极大负担。因此,急需开发一种新的电源给植入式电子器件供能,为解决上述问题提供可行的方案。 植入式摩擦纳米发电机(iTENG)作为一种可植入体内的能源转换装置,以其独特的工作方式(摩擦起电及静电感应)及有效的能源转换效率受到社会广泛关注。iTENG可用于收集不同形式的生物机械能,并将其有效转换电能,此类生物机械能可源于心跳、呼吸、肢体运动及脉搏跳动等。大量的实验已证明iTE......阅读全文

纳米能源所在摩擦纳米发电机研究中获进展

  海洋是巨大的能源宝库,理论上,海洋完全可以满足地球上所有的能源需求,并且不会对大气造成任何污染,因此海洋能也被誉为“蓝色能源”。与风能或太阳能相比,蓝色能源拥有地理分布上的优势,海洋覆盖了地球75%的表面,全球约44%的人口都居住在距海岸线150千米的范围内。但与风能和太阳能等可再生能源相比,对

超高摩擦电荷密度刷新摩擦纳米发电机性能纪录

  人们一直致力于研究在维持现代社会巨大能源消耗的同时最小化环境消耗。从可再生的自然源(如太阳能、风能和生物质能)收集能量,已经被证实是应对能源危机的可持续可供选择的方向,而且在化石燃料快速消耗的今天扮演着越来越重要的角色。最近发明的摩擦纳米发电机具有质量轻、价格低廉,甚至在低工作频率下仍然高效等先

纳米能源所摩擦纳米发电机回收海水动能研究获进展

  利用海洋能源,是当今世界能源研究的前沿方向。据统计,世界范围内海洋中的波浪能达700亿千瓦,占全部海洋能量的94%,是各种海洋能量的主体。然而,一个多世纪以来,海洋波浪能开发成本高、规模小、经济效益差,而陆地近海周期短、波高小、能流密度低等特征始终束缚着其大规模商业化开发利用和发展。新型、简易、

摩擦纳米发电机可收集全向水波能

近日,中科院北京纳米能源与系统研究所等机构研究人员开发了一种用于全向水波能收集的摩擦纳米发电机。该设备可以通过共振效应实现对不同频率水波能的有效收集,并在水波测试中获得了良好的实验结果。 5月26日,相关论文刊登于《焦耳》。 该论文通讯作者、中科院北京纳米能源与系统研究所研究员王杰告诉《中国

“水能摩擦纳米发电机”海洋发电或成现实

  国家“顶尖千人计划”入选者、中国科学院外籍院士王中林领导的团队研制出水能摩擦纳米发电机,组网利用后或可实现每平方公里海面产生兆瓦级电能。海洋发电产生的能源或将超越水电等“绿色能源”。  据中科院纳米能源与系统研究所介绍,如果将这些水能摩擦纳米发电机结成网状放置到海洋中,将会使海水无规则

摩擦纳米发电机首次驱动静电纺丝系统制造纳米纤维

  静电纺丝是一种特殊的纤维制备技术,利用高压静电场对高分子溶液的击穿作用来制备微纳米纤维。静电纺丝过程需要几千伏甚至几十千伏的高压,所需电流小,仅为几个微安。传统的静电纺丝电源大都依赖电力系统并需要一套繁重的升压电路,限制了静电纺丝的应用场景。实现静电纺丝的自供能化具有重要意义。  摩擦纳米发电机

纳米能源所研制高灵敏度摩擦纳米发电机用于睡眠监测

  睡眠是人类重要的生理活动,良好的睡眠状态是保证人们生活质量和工作效率的重要因素。近年来,随着人们的健康意识日益提高,对常见的睡眠障碍的监控更加迫切。据统计,全球约有5%以上的人患有呼吸暂停综合症,这是一种睡眠时发生呼吸暂停的慢性疾病。睡眠中常见的打鼾、呼吸暂停以及引起的肢体多动是其主要表现。其患

多层集成摩擦纳米发电机的研究取得重要进展

  机械能以其大量存在、获取方便和形式多样等特点作为我们收集利用的优势能源。基于压电、静电和电磁机制的机械能收集技术现已发展成熟并可用于以下应用领域:无线传感系统、环境监测、生物医学和电子设备等。作为我们生活环境中最常见的机械能形式之一,生物机械能由步行等人体运动产生,而这些能量往往被浪费掉了。如果

纳米能源所开发生物全可吸收纯天然材料摩擦纳米发电机

  日益增长的神经及心血管疾病对可植入医疗电子器件的需求越来越多,对其工作性能要求也越来越高。此类电子器件主要包括:心内压传感器、心脏起搏器、心脏除颤器、深脑/神经刺激器等。长期的体内植入对可植入医疗器件的体积、稳定性和生物相容性都有很高要求。现有可植入医疗电子器件的电源主要依赖于商业可充电及不可充

电荷补偿机制实现摩擦纳米发电机稳定超高电压输出

  摩擦纳米发电机(Triboelectric nanogenerator, TENG)被认为是一种高开路电压的器件,并已应用于驱动离子源、等离子源、静电纺丝及介电弹性体等,然而,要达到数千伏的高压往往需要较大的器件面积、较高的摩擦力或者外加倍压电路,并不能完全满足实际应用的需求;此外,文献中报道的