便携式X射线荧光光谱仪应用条件试验及效果
利用IED2000P型便携式X射线荧光光谱仪,选择安徽绩溪荆州银多金属矿矿区进行找矿条件试验。试验中分别就不同测点密度、基岩与土壤测量、不同湿度条件、基岩与岩石粉末样测量进行了对比研究,确定了最佳的应用条件。即:确定测点密度应综合考虑异常体规模和实际工作量因素;基岩X荧光光谱测量较之土壤测量更能客观地反映地质体的异常特征;湿度因素不会影响异常的存在,但会降低异常的强度;岩石粉末样X荧光光谱测量较之岩石样测量值更具有代表性。X荧光光谱测量法与化探原生晕取样分析对比研究和相关分析表明,应用X荧光光谱法进行找矿研究不失为一种方便快捷和行之有效的找矿方法。......阅读全文
便携式X射线荧光光谱仪应用条件试验及效果
利用IED2000P型便携式X射线荧光光谱仪,选择安徽绩溪荆州银多金属矿矿区进行找矿条件试验。试验中分别就不同测点密度、基岩与土壤测量、不同湿度条件、基岩与岩石粉末样测量进行了对比研究,确定了最佳的应用条件。即:确定测点密度应综合考虑异常体规模和实际工作量因素;基岩X荧光光谱测量较之土壤测量更能客观
X射线荧光光谱仪(XRF)的应用
可以进行固体、粉末、薄膜、液体样品及不规则样品的无标样元素的定性定量分析。主要用于金属、无机非金属等材料中化学元素的成分分析,X射线荧光光谱法XRF测试的元素范围包含有效的元素测量范围为1号元素 (Na)到92号元素(U)
简述X射线荧光光谱仪的应用
X射线荧光光谱仪(X-rayFluorescenceSpectrometer,简称:XRF光谱仪),是一种快速的、非破坏式的物质测量方法。X射线荧光(X-rayfluorescence,XRF)是用高能量X射线或伽玛射线轰击材料时激发出的次级X射线。这种现象被广泛用于元素分析和化学分析,特别是在
X射线荧光光谱仪特点及应用
1.优点: 设备相对简单。 可以在大气中工作,灵敏度高。 2.缺点: X射线入射深度较大,因而当薄膜厚度在微米级以下时,常规射线技术在测定薄膜结构和成分信息时没有优势。 如:实验使用Cu靶X射线的波长约为0.15 nm,其在固体中的穿透厚度一般在100~10000 m之间,然而一般薄膜
X-射线荧光光谱仪
用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。图
X射线荧光光谱仪X射线的衍射介绍
相干散射与干涉现象相互作用的结果可产生X射线的衍射。X射线衍射与晶格排列密切相关,可用于研究物质的结构。 其中一种用已知波长λ的X射线来照射晶体样品,测量衍射线的角度与强度,从而推断样品的结构,这就是X射线衍射结构分析(XRD)。 另一种是让样品中发射出来的特征X射线照射晶面间距d已知的晶体
X射线荧光光谱仪X射线散射的介绍
除光电吸收外,入射光子还可与原子碰撞,在各个方向上发生散射。散射作用分为两种,即相干散射和非相干散射。 相干散射:当X射线照射到样品上时,X射线便与样品中的原子相互作用,带电的电子和原子核就跟随着X射线电磁波的周期变化的电磁场而振动。因原子核的质量比电子大得多,原子核的振动可忽略不计,主要是原
X射线荧光光谱仪X射线光管结构
常规X射线光管主要采用端窗和侧窗两种设计。普通X射线光管一般由真空玻璃管、阴极灯丝、阳极靶、铍窗以及聚焦栅极组成,并利用高压电缆与高压发生器相接,同时高功率光管还需要配有冷却系统。侧窗和端窗X射线光管结构如图6和图7所示。 当电流流经X射线光管灯丝线圈时,引起阴极灯丝发热发光,并向四周发射电子
概述X射线荧光光谱仪X射线的产生
根据经典电磁理论,运动的带电粒子的运动速度发生改变时会向外辐射电磁波。实验室中常用的X射线源便是利用这一原理产生的:利用被高压加速的电子轰击金属靶,电子被金属靶所减速,便向外辐射X射线。这些X射线中既包含了连续谱线,也包括了特征谱线。 1、连续谱线 连续光谱是由高能的带电粒子撞击金属靶面时受
X射线荧光光谱仪X射线吸收的介绍
当X射线穿过物质时,一方面受散射作用偏离原来的传播方向,另一方面还会经受光电吸收。光电吸收效应会产生X射线荧光和俄歇吸收,散射则包含了弹性和非弹性散射作用过程。 当一单色X射线穿过均匀物体时,其初始强度将由I0衰减至出射强度Ix,X射线的衰减符合指数衰减定律: 式中,μ为质量衰减系数;ρ为样
X射线荧光光谱仪的广泛应用
X射线荧光光谱分析技术目前已在地质、冶金、材料、环境等无机分析领域得到了广泛的应用,是各种无机材料中主组分分析最重要的技术手段之一,各种与X射线荧光光谱相关的分析技术,如同步辐射XRF、全反射XRF光谱技术等,在痕量和超痕量分析中发挥着重要的作用。 X射线荧光光谱仪主要性能优势: 1.集合
简述X射线荧光光谱仪(XRF)的应用
可以进行固体、粉末、薄膜、液体样品及不规则样品的无标样元素的定性定量分析。主要用于金属、无机非金属等材料中化学元素的成分分析,X射线荧光光谱法XRF测试的元素范围包含有效的元素测量范围为1号元素 (Na)到92号元素(U)
X射线荧光光谱仪的广泛应用
X射线荧光光谱分析技术目前已在地质、冶金、材料、环境等无机分析领域得到了广泛的应用,是各种无机材料中主组分分析重要的技术手段之一,各种与X射线荧光光谱相关的分析技术,如同步辐射XRF、全反射XRF光谱技术等,在痕量和超痕量分析中发挥着重要的作用。 X射线荧光光谱仪主要性能优势: 1.集合了多年
X射线荧光光谱仪的应用领域
X射线荧光光谱仪的不断完善和发展所带动的X射线荧光分析技术已被广泛用于冶金,地质、矿物、石油、化工、生物、医疗、刑侦、考古等诸多部门和领域。X射线荧光光谱分析不仅成为对其物质的化学元素、物相、化学立体结构、物证材料进行试测,对产品和材料质量进行无损检测,对人体进行医检和微电路的光刻检验等的重要分
x射线荧光光谱仪的应用领域
荧光光谱仪被广泛应用于化学、环境和生物化学领域。 是研究小分子与核酸相互作用的主要手段。通过药物与核酸相互作用,使DNA与探针键合的程度减小,反映在探针荧光光谱的改变,从而可以了解药物和核酸的作用机理。 荧光光谱仪是研究药物与蛋白质相互作用的常用仪器。药物与蛋白质相互作用后可能引起药物自身荧
X射线荧光光谱仪和X射线荧光能谱仪特点对比
X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。前者分辨率高,对轻、重元素测定的适应性广。对高低含量的元素测定灵敏度均能满足要求。后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。对于能量小于2万电子伏特左右的能谱的分辨率差。
Niton便携式X射线荧光光谱仪在自动化行业的应用
*,自动检测技术是在仪器仪表的使用、研制、生产的基础上发展起来的一门综合性技术。在当今经济化高速发展的时代,随着工业自动化技术的迅猛发展,自动检测技术被广泛地应用在工业自动化、化工、军事、航天、通讯、医疗、电子等行业。 自动检测系统广泛应用于各类产品的设计、生产、使用、维护等各个阶段,对提高产
X射线荧光应用及分析
a) X射线用于元素分析,是一种新的分析技术,但在经过二十多年的探索以后,现在已完全成熟,已成为一种广泛应用于冶金、地质、有色、建材、商检、环保、卫生等各个领域。b) 每个元素的特征X射线的强度除与激发源的能量和强度有关外,还与这种元素在样品中的含量。c) 根据各元素的特征X射线的强度,也可以获得各
X射线荧光应用及分析
a) X射线用于元素分析,是一种新的分析技术,但在经过二十多年的探索以后,现在已完全成熟,已成为一种广泛应用于冶金、地质、有色、建材、商检、环保、卫生等各个领域。 b) 每个元素的特征X射线的强度除与激发源的能量和强度有关外,还与这种元素在样品中的含量。 c) 根据各元素的特征X射线的强度,
X射线荧光应用及分析
a) X射线用于元素分析,是一种新的分析技术,但在经过二十多年的探索以后,现在已完全成熟,已成为一种广泛应用于冶金、地质、有色、建材、商检、环保、卫生等各个领域。 b) 每个元素的特征X射线的强度除与激发源的能量和强度有关外,还与这种元素在样品中的含量。 c) 根据各元素的特征X射线的强
X射线荧光光谱仪简介
X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析F(9)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水
X射线荧光光谱仪概述
X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析B(5)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水
X射线荧光光谱仪优点
X射线荧光光谱仪优点:1)可在一台仪器上可实现扫描式X射线波长色散分析、X射线能量色散分析、X-射线聚焦微小区域分析、游离氧化钙X射线衍射分析。2)波长色散通道(波谱核)和能量色散通道(能谱核)可同时分别得到Be- Am 和Na-Am 所有元素的光谱数据和定量分析结果。3)软件可以得到上述各种分析技
X射线荧光光谱仪原理
X射线荧光光谱仪原理 X射线荧光光谱仪主要由激发源(X射线管)和探测系统构成。其原理就是:X射线管通过产生入射X射线(一次X射线),来激发被测样品。 受激发的样品中的每一种元素会放射出二次X射线(又叫X荧光),并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这
X射线荧光光谱仪(XRF)
原理:用一束X射线或低能光线照射样品材料,致使样品发射二次特征X射线,也叫X射线荧光。这些X射线荧光的能量或波长是特征的,样品中元素的浓度直接决定射线的强度。从而根据特征能量线鉴别元素的种类,根据谱线强度来进行定量分析。XRF有波长散射型(WDXRF)和能量散射型(EDXRF)两种,前者测量精密度好
X射线荧光光谱仪(XRF)
自1895年伦琴发现X射线以来,X射线及相关技术的研究和应用取得了丰硕成果。其中,1910年特征X射线光谱的发现,为X射线光谱学的建立奠定了基础;20世纪50年代商用X射线发射与荧光光谱仪的问世,使得X射线光谱学技术进入了实用阶段;60年代能量色散型X射线光谱仪的出现,促进了X射线光谱学仪器的迅
x射线荧光光谱仪简介
x射线荧光光谱仪提供了一种最简单,最准确,最经济的分析方法,可用于确定多种类型材料的化学成分。它是无损且可靠的,不需要或只需很少的样品制备,适用于固体,液体和粉末状样品。它可以用于从钠到铀的多种元素,并提供亚ppm级以下的检测限;它也可以轻松,同时地测量高达100%的浓度。
X射线荧光光谱仪结构
该系统由X射线发生器、光谱仪主体部分、电气部分及系统控制器、计算机部分组成。3.1 X射线发生器 X射线发生器由高压变压器及管流管压控制单元、X射线管、热交换器。 3.1.1高压变压器及管流管压控制单元 产生高稳定的高压加到X射线管上用以产生X射线。这里利用高电压加速的高速电子轰击X射线管金属靶面产
波长色散X射线荧光光谱仪应用领域
理学波长色散X射线荧光光谱仪是利用原级X射线或其他光子源激发待测物质中的原子,使之产生荧光(次级X射线)。从而进行物质成分分析的仪器。X射线荧光光谱仪又称XRF光谱仪,有色散型和非色散型两种。它的优点是不破坏样品,分析速度快,适用于测定原子序数4以上的所有化学元素,分析精度高,样品制备简单。应用领域
X射线荧光光谱仪的原理和应用介绍
X射线荧光光谱仪(X-ray Fluorescence Spectrometer,简称:XRF光谱仪),是一种快速的、非破坏式的物质测量方法。X射线荧光(X-ray fluorescence,XRF)是用高能量X射线或伽玛射线轰击材料时激发出的次级X射线。这种现象被广泛用于元素分析和化学分析,特别是