Antpedia LOGO WIKI资讯

爱尔兰利用石墨烯开发出新型生物材料

爱尔兰先进材料和生物工程国家研究中心(AMBER)和德国科学家合作,开发出一种新型生物材料,用于心脏病和烧伤患者的组织再生。这项研究成果发表在材料学科国际权威杂志《先进材料》上。 对于神经损伤的病人来说,目前要修复超过两厘米的神经损伤非常困难。一个可能的方法是通过具备再生能力的生物材料,与一种能进行电刺激的材料相结合,通过受损组织传递电信号,从而使受影响区域恢复功能。 胶原蛋白在人体内十分丰富,具有再生潜能。石墨烯是世界上最薄的材料,具有独特的机械和电气性能。研究人员结合两种材料的有益特性,进行“生物杂交”,产生一种机械强度高、导电性好的材料。这种新型材料被证明可以促进细胞生长。当电刺激发生时,能够根据电脉冲方向调整心肌细胞。这个特性可用于大范围神经缺损和大面积心脏壁损伤的修复,也可用于脊髓和大脑等区域的再生。 此外,这个材料还有防感染的功能,可以应用于下一代抗菌医疗设备、生物传感器等的开发。AMBER中心还开发......阅读全文

苏州纳米所石墨烯三维神经支架研究取得进展

  石墨烯为单层或少层碳原子组成的低维碳纳米材料,具有优异的理化性质,自2004年被发现以来,迅速成为材料科学与凝聚态物理等领域的研究前沿。同时,石墨烯展现出良好生物相容性,在生物医学领域的应用近年来备受关注,已被成功用于细胞成像、药物输运、干细胞工程及肿瘤治疗方面。   中国科学院苏州纳米技术与

苏州纳米所在三维碳材料神经支架研究中取得进展

  微环境中支架维度、刚度、拓扑结构等物理因素,表面功能团修饰等化学因素,以及胞外因子缓控释等生物因素,决定了干细胞增殖状态与分化方向的命运。  基于石墨烯和碳纳米管的生物材料具有优异的生物相容性、突出的导电性以及良好的可操作性和机械稳定性,在神经电极、组织工程和再生医学等领域获得较广泛的应用。碳纳

苏州纳米所在三维碳材料神经支架研究中取得进展

  微环境中支架维度、刚度、拓扑结构等物理因素,表面功能团修饰等化学因素,以及胞外因子缓控释等生物因素,决定了干细胞增殖状态与分化方向的命运。  基于石墨烯和碳纳米管的生物材料具有优异的生物相容性、突出的导电性以及良好的可操作性和机械稳定性,在神经电极、组织工程和再生医学等领域获得较广泛的应用。碳纳

苏州纳米所“量身定制”3D石墨烯神经支架

  将二维单原子层石墨烯组装成三维宏观结构是石墨烯走向实际应用的途径之一。三维石墨烯的特性与其结构和尺寸紧密联系,控制制备三维石墨烯的结构和尺寸,不仅能够有效调控其性质,以满足不同应用需求,而且为更好地理解石墨烯在不同领域的作用机理提供了机会。  中国科学院苏州纳米技术与纳米仿生研究所纳米-生物界面

石墨烯或带来医疗革命 不过目前还没走出实验室

  被誉为“新材料之王”的石墨烯,不仅在电子产品、新能源电池、航空航天领域引起社会的关注,在医疗领域也被视为引发下一次医疗革命的关键。  近日,捷克奥洛穆茨大学的科研团队宣布利用石墨烯研制出了世界上最小的金属磁铁,可以应用于核磁共振成像、水处理、生物化学和电子等多个领域。鉴于石墨烯更大表面积、生物适

石墨烯:医疗的下一次革命也许就靠它了!

  两位英国物理学家通过一种简单的方法从石墨中分离出单层石墨,即石墨烯,并因此获得了2010年诺贝尔物理学奖。石墨烯是由二维单层碳原子组成的六角晶格物质,是世界上最薄、最好的导电和导热材料,是人类已知强度最高的物质,具备极高的透光性和柔韧性。正因为这些优异的性能使之赢得了“最完美材料”的美誉,许多人

第二届全国样品制备学术报告会在贵阳举办(上)

  分析测试百科网讯 2015年8月16日,中国仪器仪表学会分析仪器分会样品制备专业委员主办的第二届全国样品制备学术报告会在贵阳举行。本次大会与中国仪器仪表学会分析仪器分会2015学术年会同期举办,参会200余人。张玉奎院士担任会议名誉主席,关亚风研究员担任会

科学家研发出新型三维碳神经支架

  由中国、意大利、美国学者组成的一个国际研究团队,最新研发出一种三维石墨烯-碳纳米管复合网络支架。这种生物支架能很好地模拟大脑皮层结构,未来,研究者们不仅能借助支架清晰、直观地看到脑部疾病的发展过程,还有望将其植入大脑,用于阿尔茨海默症等多种神经退行性疾病的治疗。  碳神经支架是一种基于石墨烯、碳

石墨烯成医学检测工具其声学特性有助诊断ALS

  石墨烯是一种很神奇的材料,具有优异的光学、电学、力学特性,应用前景广阔。而美国伊利诺伊大学芝加哥分校的一项新研究,又赋予了这种材料一种新用途——检测肌萎缩侧索硬化症(ALS)。研究人员指出,石墨烯是一种很有用的检测工具,其声学特性能够帮助科学家开发新的神经退行性疾病诊断方法。相关研究发表在美国化

石墨烯成医学检测工具

   石墨烯是一种很神奇的材料,具有优异的光学、电学、力学特性,应用前景广阔。而美国伊利诺伊大学芝加哥分校的一项新研究,又赋予了这种材料一种新用途——检测肌萎缩侧索硬化症(ALS)。研究人员指出,石墨烯是一种很有用的检测工具,其声学特性能够帮助科学家开发新的神经退行性疾病诊断方法。相关研究发表在美国

石墨烯—碳纳米管复合支架可模拟脑神经网络

  阿尔茨海默症、帕金森病、脑胶质瘤……在科技发达的今天,人类对脑部疾病依然束手无策。近日,由中国、意大利、美国学者组成的研究团队,最新研发出一种三维石墨烯—碳纳米管复合网络支架。这种生物支架能很好地模拟大脑神经网络结构,未来,将可用于药物筛选或植入大脑帮助治疗脑部疾病。  该碳神经支架由我国率先提

清华研发出首个人工神经突触

  让电脑像人类的大脑一样学习和记忆是一个令科研人员望而却步的挑战。因为人类的大脑拥有850亿个神经元和数万亿个神经突触,而且这些神经突触具有很强的可塑性,可以随着时间的变化自我调整,变得更强或更弱。   不过,据物理学家组织网11月12日报道,清华大学信息科学与技术国家实验室的科研人员近日在美国化

中科院青岛能源所:新机制力促成果转化

  “吃进”秸秆尾菜,“吐出”天然气,并非天方夜谭,这是中国科学院青岛生物能源与过程所(以下简称“青岛能源所”)与青岛华通集团合作建设的秸秆基生物天然气产业化示范工程(800万立方米/年)的真实场景。近日,记者走进青岛平度市南村镇,探访这个我国北方最大的利用自主技术建设的秸秆生物天然气项目。  青岛

盘点2015年世界各国先进制造技术成果

   人类文明有三大物质支柱:材料、能源和信息。这三大支柱都离不开人类的制造活动。没有“制造”,就没有人类。制造技术是制造业所使用的一切生产技术的总称,是将原材料和其他生产要素经济合理地转化为可直接使用的具有较高附加值的成品/半成品和技术服务的技术群。近两百年来.在市场需求不断变化的驱动下,制造业的

与香港研究资助局联合科研资助合作项目批准通知

2017年度国家自然科学基金委员会与香港研究资助局联合科研资助合作研究项目批准通知  2017年度国家自然科学基金委员会(NSFC)与香港研究资助局(RGC)在数理科学、化学科学、生命科学、海洋与环境科学、医学科学、管理科学等领域共同资助合作研究项目。根据专家评审意见并经双方机构共同协商,将对以下2

2017中国国际石墨烯创新大会:让“黑金”发光

   石墨烯LED灯、石墨烯涂料、石墨烯口罩……走进近日于南京举行的石墨烯材料应用博览会展厅,这些“接地气”的产品琳琅满目。  “截至今年5月底,我国拥有石墨烯专利技术,从事石墨烯研发、生产、销售、推广的相关企业数量达到2000多家,其中已形成石墨烯业务的企业超过50家,2016年国内石墨烯产业整体

美发明极细石墨烯传感器 探究人脑神经结构与功能

  美国防部先进项目研究局(DARPA)与威斯康辛大学麦迪逊分校的研究人员共同研发出一项人脑研究技术,可探究人脑神经结构与功能的联系。该技术用石墨烯做传感器,厚度仅相当于4个原子,首次可兼容光学和电学手段同时观测。研究报告最近刊登在《自然·通讯》杂志上。  “这一技术表明,在对脑部神经网络

IBM投30亿美元用于未来芯片研发

   IBM近日宣布,将在未来5年投资30亿美元,用于研发7纳米及以下硅芯片技术,以及后硅时代芯片材料及技术应用。  IBM研究人员和其他半导体专家预测,半导体制程工艺有希望在未来数年里从目前的22纳米缩减到14纳米,进而缩减到10纳米。然而,如果需要在十年以后压缩到7纳米或更低,则需要在半导体架构

磁共振高度兼容的电极可促进解析深部脑刺激治疗机理

  深部脑刺激(Deep Brain Stimulation, DBS)和功能磁共振成像(Functional magnetic resonance imaging,fMRI)联用对解析DBS治疗各类神经类疾病的机理和效果有重要意义。传统用于DBS的电极通常会导致磁场的严重扭曲,使得电极周围的大面积

4月30日《自然》杂志精选

  封面故事: 基底外侧杏仁核的功能  杏仁核是大脑中进行情绪处理和应对具有积极或消极联系的刺激(好的刺激和坏的刺激)的重要部分。我们对杏仁核神经元是怎样分化的或这些不同功能是怎样分割到不同地方的知之甚少。在这项研究中,Kay Tye及同事识别出基底外侧杏仁核(BLA)是介导积极和消极情绪或动机反应

中科院重庆绿色智能技术研究院通过验收

   10月9日,中科院重庆绿色智能技术研究院(简称“重庆研究院”)顺利通过验收委员会的验收。验收委员会由中科院院长白春礼、国务院三峡办主任聂卫国、市长黄奇帆任主任,中科院副院长施尔畏、国务院三峡办副主任陈飞、副市长吴刚任副主任。   验收委员会听取了重庆研究院筹建工作情况和未来发展设想的汇报,参观

小型生物3D打印机有望再生神经细胞

  长期以来,科幻小说的梦想之一就是构建肉体,如《星球大战》中卢克·天行者的手,《第五元素》中的红发女莉露。有了3D打印以后,现实仍未赶上幻想,但有了生物3D打印以后,情况就不同了,它研究的正是打印身体组织。最近,美国密歇根理工大学研究人员开发出一种小型的生物3D打印机,可用于打印人工神经组织。  

欧盟将纳米金刚石应用于医学领域

  金刚石不仅是自然界最坚硬的物质,同时还能散发出最迷人的光芒。欧盟科研人员利用这两大特性将纳米金刚石应用在医学领域。在欧盟第7研发框架计划和地平线2020计划资助下,分别由法国和德国作为协调国的NeuroCare和NDI项目,利用纳米金刚石作为与人体交互新的媒介,有望在人工视网膜植入和磁共振成像(

材料和机械因素诱导神经细胞再生的治疗新策略

  美国内布拉斯加大学林肯分校Jung Yul Lim博士通过化学图谱及机械因素刺激细胞生长,提出材料和机械因素诱导神经细胞再生的新概念。  受损的神经系统通常不会自行愈合,因此,有必要开发出新技术刺激神经发生。关于此类研究,已有很多关于各种可溶性因子作用的试验。而另一方面,其他的细胞外因素刺激,如

透视美国“脑计划”:复杂度超过人类基因组计划

  4月,美国白宫公布了“推进创新神经技术脑研究计划”(简称“脑计划”)。美国总统奥巴马在2013年初的国情咨文中表示,这项计划将让科学达到一个自从太空竞赛以来从未见过的高度。无独有偶,欧盟委员会也在年初宣布,人脑工程和石墨烯两大科技入选“未来新兴旗舰技术项目”,并为此设立专项研发计划。  “脑计划

透视美国“脑计划”:复杂度超过人类基因组计划

  本月美国白宫公布了“推进创新神经技术脑研究计划”(简称“脑计划”)。美国总统奥巴马在2013年初的国情咨文中表示,这项计划将让科学达到一个自从太空竞赛以来从未见过的高度。无独有偶,欧盟委员会也在年初宣布,人脑工程和石墨烯两大科技入选“未来新兴旗舰技术项目”,并为此设立专项研发计划

氧化石墨烯基磁共振纳米诊疗剂研究取得进展

  在磁场的作用下,一些具有磁性的原子能够产生不同的能级,如果外加一个能量(即射频磁场),且这个能量恰能等于相邻2个能级能量差,则原子吸收能量产生跃迁(即产生共振),从低能级跃迁到高能级,能级跃迁能量的数量级为射频磁场的范围。核磁共振可以简单的说为研究物质对射频磁场能量的吸收情况。将这种技术用于人体

电磁学理论的建立

“Electricity”(电)这个单词起源于希腊文的“琥珀”。中国西晋时期,《博物志》中也有摩擦起电的记载。电和磁的利用跟人类生产和生活的联系非常紧密,电学和磁学的研究促进了世界科学技术的迅猛发展,电磁学直接推动着社会的进步。静电学的发展自1660年盖里克发明摩擦起电机后,电现象的研究变得可行了。

爱尔兰利用石墨烯开发出新型生物材料

  爱尔兰先进材料和生物工程国家研究中心(AMBER)和德国科学家合作,开发出一种新型生物材料,用于心脏病和烧伤患者的组织再生。这项研究成果发表在材料学科国际权威杂志《先进材料》上。  对于神经损伤的病人来说,目前要修复超过两厘米的神经损伤非常困难。一个可能的方法是通过具备再生能力的生物材料,与一种

鼻腔内的传感器,了解一下?

   日前,《中国科学报》记者在中国科学院化学所(以下简称“化学所”)活体分析化学院重点实验室看到,研究人员将一块指甲盖大的传感器放置在一只小鼠鼻腔处,电脑屏幕上即可显示出它的呼吸频率。  “我们基于石墨炔材料,研发了这块传感器,实现了小鼠呼吸频率变化的快速、高精度监测。”化学所研究员毛兰群告诉记者