Antpedia LOGO WIKI资讯

白皮书:青藏高原地区仍是地球上最洁净地区之一

国务院新闻办公室18日发表的《青藏高原生态文明建设状况》白皮书说,青藏高原地区仍然是地球上最洁净的地区之一。 白皮书说,青藏高原人类活动强度较低,空气质量受人类活动影响较小,污染物种类较少,浓度较低,各类污染物含量与北极地区相当。随着绿色能源推广、生态城镇建设和农村环境综合治理的不断推进,青藏高原空气质量进一步改善。 目前,青藏高原主要江河湖泊基本处于天然状态,水质状况保持良好。白皮书指出,青藏高原是亚洲多条主要江河的源头区,也是中国水资源管理和水环境保护最严格的区域之一。国家不断加大对青藏高原水环境保护力度,主要措施包括:编制重要水域综合规划,划定江河湖泊水功能区,明确水域功能和水质保护目标,核定重要江河湖泊水功能区纳污能力和限排总量,实行最严格的水资源管理制度。 空中鸟瞰拉萨市拉鲁湿地(2017年11月23日摄)。新华社记......阅读全文

青藏高原所改进模型减小青藏高原蒸发预估误差

原文地址:http://www.cas.cn/syky/202103/t20210325_4782286.shtml   蒸散发是地球多圈层相互作用中碳循环和水热循环的关键过程,深刻影响青藏高原地区的天气、气候和及亚洲季风系统演变。青藏高原的大部分地区属于高寒干旱和半干旱地区,浅层土壤水状况反映了

青藏高原所基于遥感地温得到青藏高原气温递减率

  气温递减率是高山地区最常用的气温插值参数。大量研究表明青藏高原气温递减率具有很强的空间异质性和季节变化,但稀疏分布的气象站点难以提供准确可靠的温度递减率参数。虽然利用遥感地表温度估算气温的研究已有很多,但是尚无研究定量评价利用遥感地温数据估算气温递减率的可行性及精度。  中科院青藏高原地球科学卓

遇见科学,遇见青藏高原

原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500640.shtm走进找不到北的古地磁小屋、破解青藏高原“岩石密码”、穿越跨越百万年的化石长廊......5月14日,中国科学院青藏高原研究所(以下简称青藏高原所)公众科学开放日在北京、拉萨和青藏高原所

青藏高原所发现森林更新可以记录青藏高原冰川变化

  青藏高原及其周边山脉是全球中低纬度冰川分布最为集中的地区,为亚洲多条大河(雅鲁藏布江、长江、印度河等)提供了水源。然而,由于地处偏远、难以到达,高原地区的冰川观测资料不仅少,而且时间也很短。数据匮乏限制了人们对长时间尺度上(几十-几百年)冰川变化及其对气候变化响应的认识。  在青藏高原南缘喜马拉

青藏高原所揭示降水和温度对青藏高原返青期的交互影响

  理解青藏高原返青期对气候变化的响应机制是一个重要的科学研究目标,同时具有重要的现实意义。上世纪80和90年代加剧变暖导致高原返青期提前达15-18天,约为同期北半球平均的3倍。近十余年高原继续快速升温,区域平均返青期却并未呈现明显变化趋势,较早研究推测西南地区春季降水减少引起水分不足,导致返青期

青藏高原所在青藏高原物候变化研究中获新进展

  近日,《美国国家科学院院刊》(PNAS)发表了以中科院青藏高原研究所为第一署名单位的通讯论文No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade。论文

青藏高原所揭示种间关系调控青藏高原树线的上升速率

  树线作为直立树木分布的海拔上限或纬度北界,被视为森林生态系统响应全球变化的敏感生态指标。国际上普遍认为,树线上树木的生长主要受生长季低温限制,学者们以此为基础提出生长受限假说来解释树线形成机制。基于生长受限假说,气候变暖将导致高山树线向更高海拔迁移。然而,全球树线调查数据显示,过去100年来约5

守护青藏高原这片“净土”

  新春佳节,在中科院青藏高原研究所青藏高原地球系统与资源环境重点实验室里,忙碌的身影穿梭在仪器设备与实验试剂之间,副研究员董慧科正小心翼翼地在一堆沙石碎粒里寻找一些东西,连眼都不敢眨。  “我在找青藏高原上粒径范围为10微米到5毫米的微塑料颗粒。”趁着喘息的空当,董慧科向《中国科学报》记者解释道。

青藏高原所等发现南亚大气污染物传入青藏高原的新证据

  青藏高原周边广泛分布着大气污染严重区域,这些污染物可通过大气环流进入高原,与冰冻圈联系在一起,将对气候和环境产生深刻影响。中国科学院青藏高原地球科学卓越创新中心、中国科学院青藏高原研究所副研究员丛志远与合作者对该传输机制进行了深入研究,相关结果近期发表在国际期刊Atmospheric Chemi

青藏高原降雪模拟研究获进展

  青藏高原气候模拟普遍存在湿偏差。尽管复杂地形的动力过程和物理过程表达不足被认为是模拟误差的主要原因之一,但相关研究进展甚少。其难点在于青藏高原周边地形极其复杂,引起地表湍流拖曳的地形起伏尺度小于当前的模拟网格尺度,即其影响表现为模式中的次网格效应。  近日,中国科学院青藏高原研究所三极观测与大数