光谱分析法分类及特点
光谱分析法分类及特点仪器分析中的光学分析方法可以分为光谱分析方法和非光谱分析方法。非光谱分析法是通过光的其他性质(如反射、折射、衍射、干涉等)的变化作为分析信息的分析方法,如旋光法、折射法、干涉法、散射浊度法、X射线衍射法、电子铲衍射法等。光谱分析方法通过测定待测物质的某种光谱,根据光谱中的波长特征和强度特进行定性和定量分析,光谱分析法是现代仪器分析中应用最为广泛的一类分析方法。组分的定量或定性分析中,有的已成为常规的分析方法。在物质结构分析的四大光谱紫外光谱、红外光谱、核磁共振的“H”谱和“C”谱及质谱分析)中光谱分析法占三大项,是结构分析中不可缺少的分析工具。光谱分析法与非光谱分析法的主要区别在于光谱分析法是内部能级发生变化,而非光谱分析法的内部能级不发生变化,仅测定电磁辐射性质改变。一、按光谱区不同分类按作用光和分析光谱区可分为紫外、可见光、红外等吸收光谱分析法。1.紫外分光光度分析法此法是利用溶液中分子吸收紫外光而产生跃......阅读全文
光谱分析法分类及特点
光谱分析法分类及特点仪器分析中的光学分析方法可以分为光谱分析方法和非光谱分析方法。非光谱分析法是通过光的其他性质(如反射、折射、衍射、干涉等)的变化作为分析信息的分析方法,如旋光法、折射法、干涉法、散射浊度法、X射线衍射法、电子铲衍射法等。光谱分析方法通过测定待测物质的某种光谱,根据光谱中的波长特征
光谱分析法分类及特点
仪器分析中的光学分析方法可以分为光谱分析方法和非光谱分析方法。 非光谱分析法是通过光的其他性质(如反射、折射、衍射、干涉等)的变化作为分析信息的分析方法,如旋光法、折射法、干涉法、散射浊度法、X射线衍射法、电子铲衍射法等。光谱分析方法通过测定待测物质的某种光谱,根据光谱中的波长特征
光谱定性分析法分类及介绍
光谱定性分析就是根据光谱图中是否有某元素的特征谱线(一般是最后线)出现来判断样品中是否含有某种元素。定性分析方法常有以下两种。(1)标准试样光谱比较法将要检出元素的纯物质或纯化合物与试样并列摄谱于同一感光板上,在映谱仪上检查试样光谱与纯物质光谱。若两者谱线出现在同一波长位置上,即可说明某一元素的
光谱分析法的分类及依据
根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.历史上曾通过光谱分析发现了许多新元素,如铷,铯,氦等.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成
光谱分析法的分类及原理
分类 光谱分析法主要有原子发射光谱法、原子吸收光谱法、紫外-可见吸收光谱法、红外光谱法等。根据电磁辐射的本质,光谱分析又可分为分子光谱和原子光谱。 原理 物质吸收波长范围在200~760nm区间的电磁辐射能而产生的分子吸收光谱称为该物质的紫外——可见吸收光谱,利用紫外——可见吸收光谱进行物
光谱分析法分类
光谱分析仪的构造包括:入射狭缝,色散系统,成像系统以及出射狭缝组成。 光谱分析仪包括集中类型,如可见光波段使用的光谱分析仪外,红外光谱分析仪,另外还有紫外光谱分析仪,他们的用途是较为广泛的,在空气污染、水污染、食物卫生、金属产业等行业中,是常用的检测仪器。主要通过光谱分析仪对光对样品进行分析,
光谱分析法的应用及特点
应用 光谱分析法开创了化学和分析化学的新纪元,不少化学元素通过光谱分析发现。已广泛地用于地质、冶金、石油、化工、农业、医药、生物化学、环境保护等许多方面。光谱分析法是常用的灵敏、快速、准确的近代仪器分析方法之一。 特点 (1)分析速度较快原子发射光谱用于炼钢炉前的分析,可在l~2分钟内,同
原子吸收分析法中光谱干扰分类及原理
原子吸收分析法中的光学干扰主要有谱线抑制和背景干扰两种,是在光谱发射和吸收过程中产生的干扰。首先,谱线干扰是指在单色器光谱通带内,除了元素吸收线外,还射入了发射线的临近线或者其他吸收线。在进行元素测定时,仪器中总是不可避免地存在所测元素之外的一些东西,比如空心阴极灯的元素、杂质以及载气元素等,这些物
光谱分析法的分类
分子能级之间跃迁形成的发射光谱和吸收光谱。分子光谱非常丰富,可分为纯转动光谱、振动 - 转动光谱带和电子光谱带。分子的纯转动光谱由分子转动能级之间的跃迁产生,分布在远红外波段,通常主要观测吸收光谱;振动 - 转动光谱带由不同振动能级上的各转动能级之间跃迁产生,是一些密集的谱线,分布在近红外波段,通常
光谱分析法有哪些分类
光谱分析法主要有原子发射光谱法、原子吸收光谱法、紫外-可见吸收光谱法、红外光谱法等。根据电磁辐射的本质,光谱分析又可分为分子光谱和原子光谱。
一文了解光分析法的基本特点及分类
概述 主要根据物质发射,吸收电磁辐射以及物质与电磁辐射的相互作用来进行分析的一类重要的仪器分析法。 光学分析法是基于物质对光的吸收或激发后光的发射所建立起来的一类方法,比如紫外-可见分光光度法,红外及拉曼光谱法,原子发射与原子吸收光谱法,原子和分子荧光光谱法,核磁共振波谱法,质谱法等。 紫
光谱分析法的概念和分类
根据与电磁辐射作用的物质是以气态原子还是以分子(或离子团)形式存在,可将光谱法分为原子光谱法和分子光谱法两类。原子光谱法是由原子外层或内层电子能级的变化产生的,它的表现形式为线光谱。
光谱分析法的概念及分类
概念 利用光谱学的原理和实验方法以确定物质的结构和化学成分的分析方法称为光谱分析法。 英文为spectral analysis或spectrum analysis。各种结构的物质都具有自己的特征光谱,光谱分析法就是利用特征光谱研究物质结构或测定化学成分的方法。 分类 光谱分析法主要有原子
光谱分析法有哪些特点?
(1)分析速度较快原子发射光谱用于炼钢炉前的分析,可在l~2分钟内,同时给出二十多种元素的分析结果。 (2)操作简便 有些样品不经任何化学处理,即可直接进行光谱分析,采用计算机技术,有时只需按一下键盘即可自动进行分析、数据处理和打印出分析结果。在毒剂报警、大气污染检测等方面,采用分子光谱法遥
光谱分析法有哪些特点?
(1)分析速度较快原子发射光谱用于炼钢炉前的分析,可在l~2分钟内,同时给出二十多种元素的分析结果。 (2)操作简便 有些样品不经任何化学处理,即可直接进行光谱分析,采用计算机技术,有时只需按一下键盘即可自动进行分析、数据处理和打印出分析结果。在毒剂报警、大气污染检测等方面,采用分子光谱法遥
光谱分析法的分类和应用介绍
1、概念 利用光谱学的原理和实验方法以确定物质的结构和化学成分的分析方法称为光谱分析法。 英文为spectral analysis或spectrum analysis。各种结构的物质都具有自己的特征光谱,光谱分析法就是利用特征光谱研究物质结构或测定化学成分的方法。 2、分类 光谱分析法主
原子吸收光谱分析法间接测定技术的应用及分类
所谓间接原子吸收光谱法,就是在进行原子吸收测定之前,利用化学反应,使某些不能直接用原子吸收测定或灵敏度低的某些被测物质与易于原子吸收测定的元素进行定量反应,最后测定易于原子吸收测定元素的吸光度,间接求出被测物质的含量。因此,利用间接原子吸收可以成功地测定非金属元素、阴离子和有机化合物。间接原子吸收光
光谱分析法的特点有哪些
(1)分析速度较快原子发射光谱用于炼钢炉前的分析,可在l~2分钟内,同时给出二十多种元素的分析结果。 (2)操作简便 有些样品不经任何化学处理,即可直接进行光谱分析,采用计算机技术,有时只需按一下键盘即可自动进行分析、数据处理和打印出分析结果。在毒剂报警、大气污染检测等方面,采用分子光谱法遥
散剂分类及特点
1、分类(1)按组成药味多少来分类,可分为单散剂、复散剂;(2)按剂量情况来分类,可分为分剂量散、不分剂量散;(3)按用途来分类,可分为内服散、外用散。2、特点优点:(1)粉粹程度大,比表面积大、易于分散、起效快;(2)外用覆盖面积大,可以同时发挥保护和收敛等作用;(3)贮存、运输、携带比较方便;(
化学分析法分类及介绍
化学分析根据其操作方法的不同,可将其分为滴定分析(titrimetry)和重量分析(gravimetry)。滴定分析根据滴定所消耗标准溶液的浓度和体积以及被测物质与标准溶液所进行的化学反应计量关系,求出被测物质的含量,这种分析被称为滴定分析,也叫容量分析(volumetry)。利用溶液四大平衡:酸碱
光谱分析法仪器的分类和组成部件
光谱分析法基于六种现象,即吸收、荧光、磷光,散射,发射和化学发光,其测量仪器的组成虽略有不同,但大部分的基本元件十分相似。典型光谱分析仪包合5个组件:①松定的辐射源:②样品池;③波长选择器或频率调制器;④辐射检测器;⑤信号处理显示成录仪。
马弗炉的分类及特点
分类 对于马弗炉的分类,可以根据其加热元件、额定温度、和控制器的不同而分类,具体见下面: 1)按加热元件区分有:电炉丝马弗炉、硅碳棒马弗炉、硅钼棒马弗炉; 2)按额定温度来区分一般分为:1000℃以下马弗炉,1000℃、1200℃马弗炉,1300℃、1400℃马弗炉,1600℃、1700℃
光谱分析的特点和分类
根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.历史上曾通过光谱分析发现了许多新元素,如铷,铯,氦等.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成
滴定分析法分类
滴定分析方法可根据化学反应、滴定剂来源、终点指示信号、滴定剂加入过程等进行分类。滴定分析方法可根据化学反应的不同,可分为酸碱滴定、沉淀滴定、络合滴定和氧化还原滴定,具体介绍如下: 酸碱滴定法:用已知浓度的酸(或碱)来滴定未知浓度的碱(或酸)的方法,可用于测定酸、碱和两性物质,是一种利用酸碱反应进行容
原子发射光谱分析法的特点
⑴可多元素同时检测各元素同时发射各自的特征光谱; ⑵分析速度快试样不需处理,同时对几十种元素进行定量分析(光电直读仪); ⑶选择性高 各元素具有不同的特征光谱; ⑷检出限较低 10~0.1mg×g-1(一般光源);ng×g-1(ICP) ⑸准确度较高 5%~10% (一般光源);
X射线荧光光谱分析法的特点
(1)分析速度快。 (2)X射线荧光光谱跟样品的化学结合状态及物理状态无关。 (3)非破坏分析。 (4)X射线荧光分析是一种物理分析方法,所以对化学性质上属于同一族的元素也能进行分析。 (5)分析精密度高。 (6) X射线光谱比发射光谱简单,故易于解析。 (7)制样简单。 (8)X射线
原子发射光谱分析法的特点
原子发射光谱分析法的特点(1)可多元素同时检测各元素同时发射各自的特征光谱;(2)分析速度快试样不需处理,同时对几十种元素进行定量分析(光电直读仪);(3)选择性高各元素具有不同的特征光谱;(4)检出限较低10~0.1μg⋅g-1(一般光源);ng⋅g-1(ICP)(5)准确度较高5%~10% (一
原子发射光谱分析法的特点
(1)可多元素同时检测各元素同时发射各自的特征光谱; (2)分析速度快试样不需处理,同时对几十种元素进行定量分析(光电直读仪); (3)选择性高各元素具有不同的特征光谱; (4)检出限较低10~0.1μg⋅g-1(一般光源);ng⋅g-1(ICP) (5)准确度较高5%~10% (一般光
光谱分析法的历史及应用
历史 1858~1859年间,德国化学家本生和物理学家基尔霍夫奠定了一种新的化学分析方法—光谱分析法的基础。他们两人被公认为光谱分析法的创始人。 应用 光谱分析法开创了化学和分析化学的新纪元,不少化学元素通过光谱分析发现。已广泛地用于地质、冶金、石油、化工、农业、医药、生物化学、环境保护等
光谱分析法的原理及历史
原理 物质吸收波长范围在200~760nm区间的电磁辐射能而产生的分子吸收光谱称为该物质的紫外——可见吸收光谱,利用紫外——可见吸收光谱进行物质的定性、定量分析的方法称为紫外——可见分光光度法。其光谱是由于分子之中价电子的跃进而产生的,因此这种吸收光谱决定于分子中价电子的分布和结合情况。其在饲