液液分配色谱法流动相
液液分配色谱法流动相 :流动相与固定液应尽量不互溶,或者二者的极性相差越大越好。根据流动相与固定相极性的差别程度,可将液液色谱分为正相分配色谱(流动相极性小于固定相极性,极性小的先流出,适于强极性和中等极性组分分离)和反相分配色谱(流动相极性大于固定相极性,极性大的先流出,适于非极性或弱极性组分分离)。固定相 :由载体和固定液组成。常用的固定液有b,b’-氧二丙腈、聚乙二醇、聚酰胺、正十八烷、角鲨烷等。应用 :同系物组分的分离。例:分离水解蛋白质所生成的各种氨基酸,分离脂肪酸同系物等。......阅读全文
液液分配色谱法流动相
液液分配色谱法流动相 :流动相与固定液应尽量不互溶,或者二者的极性相差越大越好。根据流动相与固定相极性的差别程度,可将液液色谱分为正相分配色谱(流动相极性小于固定相极性,极性小的先流出,适于强极性和中等极性组分分离)和反相分配色谱(流动相极性大于固定相极性,极性大的先流出,适于非极性或弱极性组分分离
液液分配色谱仪固定液和流动相介绍
液液分配色谱仪是基于样品组分在固定液和流动相之间分配系数不同实现分离的。一、固定相:液液分配色谱的固定相为涂渍在载体上的固定液。1、载体:理想的载体应孔容大,孔径为10~50nm。孔径太小,较大的分子可能被完全排阻,而保留时间短,分离不佳。孔径太大,固定液易流失,柱稳定性差。由于毛细管作用,固定液在
液液分配色谱仪固定液和流动相介绍
液液分配色谱仪是基于样品组分在固定液和流动相之间分配系数不同实现分离的。一、固定相: 液液分配色谱的固定相为涂渍在载体上的固定液。 1、载体: 理想的载体应孔容大,孔径为10~50nm。孔径太小,较大的分子可能被完全排阻,而保留时间短,分离不佳。孔径太大
液液分配色谱仪固定液和流动相介绍
液液分配色谱仪是基于样品组分在固定液和流动相之间分配系数不同实现分离的。一、固定相:液液分配色谱的固定相为涂渍在载体上的固定液。1、载体:理想的载体应孔容大,孔径为 10~50 nm。孔径太小,较大的分子可能被完全排阻,而保留时间短,分离不佳。孔径太大,固定液易流失,柱稳定性差。由于毛细管作用,固定
实验室分析方法液液分配色谱法流动相概念和应用
流动相与固定液应尽量不互溶,或者二者的极性相差越大越好。根据流动相与固定相极性的差别程度,可将液液色谱分为正相分配色谱(流动相极性小于固定相极性,极性小的先流出,适于强极性和中等极性组分分离)和反相分配色谱(流动相极性大于固定相极性,极性大的先流出,适于非极性或弱极性组分分离)。固定相:由载体和固定
液液分配色谱仪固定相与流动相简介
液液分配色谱仪是利用混合物各组分在固定相和流动相中分配系数的差异进行分离。两相中有一相是固定的,称为固定相。有一相是流动的,称为流动相。一、固定相:固定相有载体和固定液组成。由于流动相参与选择竞争,因此对固定液的选择比较简单,只需使用几种极性不同的固定液即可解决分离问题。为了更好解决固定液在载体上的
液液分配色谱仪固定相与流动相简介
液液分配色谱仪是利用混合物各组分在固定相和流动相中分配系数的差异进行分离。两相中有一相是固定的,称为固定相。有一相是流动的,称为流动相。一、固定相:固定相有载体和固定液组成。由于流动相参与选择竞争,因此对固定液的选择比较简单,只需使用几种极性不同的固定液即可解决分离问题。为了更好解决固定液在载体上的
液液分配色谱仪固定相与流动相简介
液液分配色谱仪是利用混合物各组分在固定相和流动相中分配系数的差异进行分离。两相中有一相是固定的,称为固定相。有一相是流动的,称为流动相。一、固定相:固定相有载体和固定液组成。由于流动相参与选择竞争,因此对固定液的选择比较简单,只需使用几种极性不同的固定液即可解决分离问题。为了更好解决固定液在载体上的
液液分配色谱法原理
液液分配色谱法原理 :根据物质在两种互不相溶(或部分互溶)的液体中溶解度的不同实现分离。分配系数较大的组分保留值也较大。
液-—-液分配色谱法介绍
液 — 液分配色谱法及化学键合相色谱流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。达到平衡时,服从于下式:式中,cs—溶质在固定相中浓度;cm--溶质在流动相中的浓度;Vs—固定相的体积;Vm—流动相的体
快速了解液液分配色谱法分配机制
液液分配色谱法原理 :根据物质在两种互不相溶(或部分互溶)的液体中溶解度的不同实现分离。分配系数较大的组分保留值也较大。 液液分配色谱法按固定相和流动相的极性不同可分为正相色谱法(NPC)和反相色谱法(RPC)。 正相色谱法:采用极性固定相(如聚乙二醇、氨基与腈基键合相);流动相为相对非极
介绍液液分配色谱法的正相色谱法和反相色谱法
高效液相色谱法按分离机制的不同分为液固吸附色谱法、液液分配色谱法(正相与反相)、离子交换色谱法、离子对色谱法及分子排阻色谱法。本文讲的是液液分配色谱法的正相色谱法(NPC)和反相色谱法(RPC)。 使用将特定的液态物质涂于担体表面,或化学键合于担体表面而形成的固定相,分离原理是根据被分
介绍液液分配色谱法的正相色谱法和反相色谱法
液相色谱法按分离机制的不同分为液固吸附色谱法、液液分配色谱法(正相与反相)、离子交换色谱法、离子对色谱法及分子排阻色谱法。本文讲的是液液分配色谱法的正相色谱法(NPC)和反相色谱法(RPC)。 使用将特定的液态物质涂于担体表面,或化学键合于担体表面而形成的固定相,分离原理是根据被分离的组分
液-—-液分配色谱法的简介
流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。达到平衡时,服从于下式: 式中,cs—溶质在固定相中浓度;cm--溶质在流动相中的浓度; Vs—固定相的体积;Vm—流动相的体积。LLPC与GPC有相似
液液分配色谱法的定义
基于被测物质在固定相和流动相之间的相对溶解度的差异,通过溶质在两相之间进行分配以实现分离。根据固定相与流动相的极性不同,分为正相色谱和反相色谱。前者是用硅胶或极性键合相为固定相,非极性溶剂为流动相;后者是硅胶为基质的烷基键合相为固定相,极性溶剂为流动相,适用于非极性化合物的分离。
液质流动相与液相流动相有什么不同
液质的流动相要求不能含有不挥发性的盐类,如果非要加入的话,质谱要及时清洗。使用液相是因为要进行物质的结构确证。
液—液分配色谱法及化学键合相色谱
流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。 a.正相液—液分配色谱法:流动相的极性小于固定液的极性。 b.反相液—液分配色谱法:流动相的极性大于固定液的极性。 液—液分配色谱法的缺点:尽管流
液液分配色谱法的相关介绍
基于被测物质在固定相和流动相之间的相对溶解度的差异,通过溶质在两相之间进行分配以实现分离。根据固定相与流动相的极性不同,分为正相色谱和反相色谱。前者是用硅胶或极性键合相为固定相,非极性溶剂为流动相;后者是硅胶为基质的烷基键合相为固定相,极性溶剂为流动相,适用于非极性化合物的分离。
液液分配色谱法的技术特点
液-液分配(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography) 流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入
关于液液分配色谱法的介绍
固定相为液体,根据被分离的组分在流动相和固定相中的溶解度不同而分离。依固定相和流动相的极性不同可分为正相色谱法和反相色谱法。正相色谱法采用极性固定相,流动相为相对非极性的疏水性溶剂,常用于分离中等极性和极性较强的化合物;反相色谱法一般用非极性固定相,流动相为水或缓冲溶液,适用于分离非极性和极性较
关于液-—-液分配色谱法的基本介绍
液 — 液分配色谱法(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography) 流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分
液相流动相如何脱气
流动相溶液往往因溶解有氧气或混入了空气影响液相色谱的操作性能,在泵中产生气泡使流速不稳,气泡大时会在泵头形成空穴。气泡进入检测器后会在色谱图上出现尖锐的噪音峰,降低响应甚至导致信号消失。流动相中的氧对光电检测器影响最大,使紫外检测器基线增高,低波长检测时信号被抵消。在荧光检测中,溶解氧还会使荧光淬灭
液相色谱流动相小议
一、液相色谱流动相的性质要求一个理想的液相色谱流动相溶剂应具有低粘度、与检测器兼容性好、易于得到纯品和低毒性等特征。选好填料(固定相)后,强溶剂使溶质在填料表面的吸附减少,相应的容量因子k降低;而较弱的溶剂使溶质在填料表面吸附增加,相应的容量因子k升高。因此,k值是流动相组成的函数。塔板数N一般与流
液相色谱流动相脱气
流动相的脱气HPLC所用流动相必须预先脱气,否则容易在系统内逸出气泡,影响泵的工作。气泡还会影响柱的分离效率,影响检测器的灵敏度、基线稳定性,甚至使无法检测。(噪声增大,基线不稳,突然跳动)。此外,溶解在流动相中的氧还可能与样品、流动相甚至固定相(如烷基胺)反应。溶解气体还会引起溶剂PH的变化,对分
液相流动相如何脱气
流动相溶液往往因溶解有氧气或混入了空气影响液相色谱的操作性能,在泵中产生气泡使流速不稳,气泡大时会在泵头形成空穴。气泡进入检测器后会在色谱图上出现尖锐的噪音峰,降低响应甚至导致信号消失。流动相中的氧对光电检测器影响最大,使紫外检测器基线增高,低波长检测时信号被抵消。在荧光检测中,溶解氧还会使荧光淬灭
液相流动相的使用
a、流动相对样品具有一定的溶解能力b、流动相具有一定惰性,与样品不产生化学反应(特殊情况除外)。c、流动相的黏度要尽量小d、流动相的物化性质要与使用的检测器相适应e、流动相沸点不要太低,否则容易产生气泡,导致实验无法进行。f、在流动相配制好后,一定要进行脱气。对于一根特定的色谱柱,要追求最佳柱效,最
液相流动相如何脱气
流动相溶液往往因溶解有氧气或混入了空气影响液相色谱的操作性能,在泵中产生气泡使流速不稳,气泡大时会在泵头形成空穴。气泡进入检测器后会在色谱图上出现尖锐的噪音峰,降低响应甚至导致信号消失。流动相中的氧对光电检测器影响最大,使紫外检测器基线增高,低波长检测时信号被抵消。在荧光检测中,溶解氧还会使荧光淬灭
高效液相色谱的液液分配的相关介绍
流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。达到平衡时,服从于高效液相色谱计算公式: 式中,cs—溶质在固定相中浓度;cm—溶质在流动相中的浓度; Vs—固定相的体积;Vm—流动相的体积。LLPC
关于高效液相色谱的液液分配原理介绍
(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography) 流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱
液相流动相知识
流动相是影响液相色谱的关键因素。一个理想的液相色谱流动相溶剂应具有低粘度、与检测器兼容性好、易于得到纯品和低毒性等特征。高效液相色谱法中的流动相主要用水性溶剂、有机溶剂或它们的混合液,但是如何配制。选择配制的方法不同,分析结果特别是保留时间,是会有显著差别的。高效液相色谱法中的流动相主要用水性溶剂、