Antpedia LOGO WIKI资讯

X射线伴峰和鬼峰

能量比特征X射线更高的次要辐射成分使光电子动能增大,将在主峰低结合能处产生与主峰保持一定距离、并与主峰有一定强度比例的伴峰,称为X射线伴峰。在靶材有杂质、污染或氧化等非正常情况下,其他元素的X射线也会激发光电子,从而在距正常光电子主峰一定距离处出现光电子峰,称为X射线鬼峰。......阅读全文

X射线伴峰和鬼峰

能量比特征X射线更高的次要辐射成分使光电子动能增大,将在主峰低结合能处产生与主峰保持一定距离、并与主峰有一定强度比例的伴峰,称为X射线伴峰。在靶材有杂质、污染或氧化等非正常情况下,其他元素的X射线也会激发光电子,从而在距正常光电子主峰一定距离处出现光电子峰,称为X射线鬼峰。

为何出现鬼峰?

  ①进样阀残余峰--每次用后用强溶剂清洗阀,改进阀和样品的清洗;   ②样品中未知物--处理样品;   ③柱未平衡--重新平衡柱,用流动相作样品溶剂(尤其是离子对色谱);   ④三氟乙酸(tfa)氧化--每天新配,用抗氧化剂;   ⑤水污染(反相)--通过变化平衡时间检查水质量

气相色谱异常峰分析--“鬼峰”(怪峰,多余峰,记忆峰)

  (1)上一次进样的高沸点杂质峰自然流出;  (2)载气不纯过滤器失效使低沸点的污染物冷凝在色谱柱头,程序升温时正常流出;  (3)注射垫未经老化或无隔垫清洗而出的污染峰;  (4)汽化温度太高或严重污染至使样品某些组分分解;  (5)样品某些组分与被污染固定相产生了作用;  (6)色谱柱温度太高

XPS图谱之鬼峰

有时,由于X射源的阳极可能不纯或被污染,则产生的X射线不纯。因非阳极材料X射线所激发出的光电子谱线被称为“鬼峰”。

鬼峰或交叉污染问题

系统的污染主要是由鬼峰或交叉污染造成的。如果鬼峰的峰宽与样品的峰类似(具有类似的保留时间),则污染物很可能是与样品同时进入色谱柱的。进样器中可能存在额外的化合物(即污染物)或样品本身存在这些化合物。溶剂、样品瓶、瓶盖和注射器中的杂质只是某些可能的污染源。进样样品和溶剂空白有助于找到可能的污染物源。如

做HPLC的“鬼峰”知识

鬼峰,顾名思义,就是指在相同的色谱条件下,有时候出现,有时候消失的杂峰。鬼峰产生的原因是多种多样的,查询了相关文献,结合本人以往的经验,来谈谈鬼峰的成因及应对策略,主要体现在以下几个方面:1、流动相、样品及仪器中存在杂质。运行梯度洗脱时,由于开始时有机相比例不高,洗脱能力不强,部分杂质在便富集在色谱

X射线能谱重叠峰的识别

提出了一种通过谱线权重来正确识别X射线能谱重叠峰的新方法。应用该方法 ,成功地分析了Ti合金微区中能量差为 2 0eV的Ti和V的重叠峰。实验表明 ,该方法简便、可靠 ,并可适用于K Zn之间元素的分析 

液相色谱-谱图中鬼峰&干扰峰的概念

鬼峰&干扰峰     鬼峰(Ghostpeak):是对未知来源的色谱峰的统称。色谱分离过程中,特别是在梯度洗脱或者仪器使用时间过久容易产生时有时无的色谱峰,因此鬼峰最大的特点就是“飘忽不定”,“神出鬼没”,这种特性通常体现在保留时间不稳定和峰面积不稳定上。鬼峰的来源有很多,但流动相梯度变化产生的鬼峰

X射线衍射峰整图偏移的原因

XRD峰值向左偏移通常是指向小角度偏移,意味着变大,常见是掺入了比主体大的杂原子.出现“掺杂”,杂质原子会使晶胞参数变大或变小;如果左移,说明晶胞参数变大,晶面间距变大;制样时要尽量使样品和样品板相平,制样做出的数据才准确.如样品高于样品板参照面就会使衍射峰左移.如果不是全谱所有峰都发生位移而只是少

X射线衍射峰整图偏移的原因

XRD峰值向左偏移通常是指向小角度偏移,意味着变大,常见是掺入了比主体大的杂原子.出现“掺杂”,杂质原子会使晶胞参数变大或变小;如果左移,说明晶胞参数变大,晶面间距变大;制样时要尽量使样品和样品板相平,制样做出的数据才准确.如样品高于样品板参照面就会使衍射峰左移.如果不是全谱所有峰都发生位移而只是少

x射线衍射峰发生了偏移的原因

XRD峰值向左偏移通常是指向小角度偏移,意味着变大,常见是掺入了比主体大的杂原子。出现“掺杂”,杂质原子会使晶胞参数变大或变小;如果左移,说明晶胞参数变大,晶面间距变大;制样时要尽量使样品和样品板相平,制样做出的数据才准确。如样品高于样品板参照面就会使衍射峰左移。如果不是全谱所有峰都发生位移而只是少

X射线衍射峰强度 影响因素有哪些

峰位由晶胞大小和形状决定的;峰强(高)是由晶胞里原子的种类和原位置决定的。纳米材料753衍射峰的位置是由材料的结构峰强(相对高)代表材料的质量丰度等isord楼上的对于强度的说法,必须完全的基于仪器检测条件一致的情况,如果仪器不一样,参数设定或狭缝不一样,强度就没有可比性。峰位取决于晶体结构,结构没

X射线衍射峰整图偏移的原因

XRD峰值向左偏移通常是指向小角度偏移,意味着变大,常见是掺入了比主体大的杂原子.出现“掺杂”,杂质原子会使晶胞参数变大或变小;如果左移,说明晶胞参数变大,晶面间距变大;制样时要尽量使样品和样品板相平,制样做出的数据才准确.如样品高于样品板参照面就会使衍射峰左移.如果不是全谱所有峰都发生位移而只是少

x射线衍射峰发生了偏移的原因

XRD峰值向左偏移通常是指向小角度偏移,意味着变大,常见是掺入了比主体大的杂原子。出现“掺杂”,杂质原子会使晶胞参数变大或变小;如果左移,说明晶胞参数变大,晶面间距变大;制样时要尽量使样品和样品板相平,制样做出的数据才准确。如样品高于样品板参照面就会使衍射峰左移。如果不是全谱所有峰都发生位移而只是少

x射线衍射峰发生了偏移的原因

XRD峰值向左偏移通常是指向小角度偏移,意味着变大,常见是掺入了比主体大的杂原子。出现“掺杂”,杂质原子会使晶胞参数变大或变小;如果左移,说明晶胞参数变大,晶面间距变大;制样时要尽量使样品和样品板相平,制样做出的数据才准确。如样品高于样品板参照面就会使衍射峰左移。如果不是全谱所有峰都发生位移而只是少

X射线衍射峰整图偏移的原因

XRD峰值向左偏移通常是指向小角度偏移,意味着变大,常见是掺入了比主体大的杂原子.出现“掺杂”,杂质原子会使晶胞参数变大或变小;如果左移,说明晶胞参数变大,晶面间距变大;制样时要尽量使样品和样品板相平,制样做出的数据才准确.如样品高于样品板参照面就会使衍射峰左移.如果不是全谱所有峰都发生位移而只是少

x射线衍射图的峰强和什么有关

简单的说,x射线衍射图的峰强和晶面之间的距离有关(注意这里的晶面并不一定是晶体的表面)。它们的关系服从布拉格衍射方程 2dsinθ=nλ,θ为入射束与反射面的夹角,λ为X射线的波长,n为任何正整数.如果扎的深了,那么就会发现除了服从布拉格衍射方程外,x射线衍射图的峰强还和晶面上的电子密度的分布有关,

x射线衍射图的峰强和什么有关

简单的说,x射线衍射图的峰强和晶面之间的距离有关(注意这里的晶面并不一定是晶体的表面)。它们的关系服从布拉格衍射方程 2dsinθ=nλ,θ为入射束与反射面的夹角,λ为X射线的波长,n为任何正整数.如果扎的深了,那么就会发现除了服从布拉格衍射方程外,x射线衍射图的峰强还和晶面上的电子密度的分布有关,

气相色谱鬼峰的排除办法

 鬼峰(Ghost peak)是指有些峰时有时无,在某个谱图里出现,可能同样的条件再做一次又不出现了。鬼峰的原因不固定,比如信号干扰,色谱柱污染,进样隔垫碎屑,毛细管柱安装不好等,一般可以通过更换进样垫、更换衬管、老化色谱柱、更换溶剂、清洗进样针、清洗离子源等手段排除鬼峰。有时升温烧一下色谱柱、检测

X射线能谱仪谱峰重叠问题的探讨

针对X射线能谱仪在对样品进行定性分析时经常出现的元素谱峰重叠问题,进行机理分析和归纳总结,提出在物证检验中如何避免谱峰重叠带来定性分析偏差的方法. 

x射线衍射峰发生了偏移的原因有哪些

XRD峰值向左偏移通常是指向小角度偏移,意味着变大,常见是掺入了比主体大的杂原子。出现“掺杂”,杂质原子会使晶胞参数变大或变小;如果左移,说明晶胞参数变大,晶面间距变大;制样时要尽量使样品和样品板相平,制样做出的数据才准确。如样品高于样品板参照面就会使衍射峰左移。如果不是全谱所有峰都发生位移而只是少

x射线衍射峰发生了偏移的原因有哪些

XRD峰值向左偏移通常是指向小角度偏移,意味着变大,常见是掺入了比主体大的杂原子。出现“掺杂”,杂质原子会使晶胞参数变大或变小;如果左移,说明晶胞参数变大,晶面间距变大;制样时要尽量使样品和样品板相平,制样做出的数据才准确。如样品高于样品板参照面就会使衍射峰左移。如果不是全谱所有峰都发生位移而只是少

HPLC故障排除—鬼峰的出现及解决

3.鬼峰问题  鬼峰问题  预防措施和解决方案  鬼峰 柱或注射器被污染 (色谱柱或进样器污染) 仅使用HPLC级溶剂   冲洗柱,以去除杂质   在注射器用于下一个分析物时,应先进行冲洗

为何液相色谱试验时出现鬼峰?

  (1)进样阀残余峰--每次用后用强溶剂清洗阀,改进阀和样品的清洗;  (2)样品中未知物--处理样品;  (3)柱未平衡--重新平衡柱,用流动相作样品溶剂(尤其是离子对色谱);  (4)三氟乙酸(tfa)氧化--每天新配,用抗氧化剂;  (5)水污染(反相)--通过变化平衡时间检查水质量,用HP

气相色谱鬼峰及其形成原因追溯(二)

1概述前文【气相色谱鬼峰及其形成原因追溯(一)】简单介绍了载气、管路以及进样口及其各部件可能引起的鬼峰。除此之外,如进样小瓶,隔垫,配样时佩戴的橡胶手套,进样针,洗针液以及色谱柱的流失等亦会导致鬼峰的出现。2气相色谱峰来源2.1 进样小瓶与瓶盖引入的鬼峰一般地,对于新的未被使用过的进样小瓶与瓶盖是不

气相色谱鬼峰及其形成原因追溯(一)

1概述之前介绍了在反相液相色谱应用的时候,经常遇到的鬼峰现象,与之相同,在气相色谱使用过程中,鬼峰出现的概率更大,来源更多,原因查找与排除更加困难。与液相色谱不同的是,气相色谱的载气选择范围有限且没有泵,不存在由于泵的机械原因而导致的假峰现象,但是载气流路上发生的脉冲波动依然也会形成一些鬼峰,但这种

识别X射线能谱重叠峰的一种方法

本文提出了一种利用EDAX PV9900能谱仪半定量分析(SUPQ)中的峰背拟合(INTE)功能来正确识别X射线能谱重叠峰的可行方法,并以Ag-SnO2-In2O3合金材料为试样给出了几则应用实例和相应的实验结果。初步研究表明,该方法结合定性分析(EDAX)中的谱线识别(ID)功能可正确识别两峰能量

携上伴峰(shake-up)

光电离时发射出一个内层光电子后,对外层价电子来说,相当于增加了一个核电荷。由此引起电荷重新分布,体系中的价电子可能由原来占据的轨道(HOMO)向较高的、尚未被占据的轨道(LUMO)跃迁(跃迁需要能量)。从而使别的正常能量的光电子损失部分能量(动能减小),结果在主峰的高结合能端出现一个能量损失峰(sh

XPS 谱图中有哪些重要的谱线结构?具体是什么?

XPS 谱图中有哪些重要的谱线结构?具体是什么?XPS 谱图一般包括光电子谱线,卫星峰(伴峰),俄歇电子谱线,自旋- 轨道分裂(SOS)等1)光电子谱线:每一种元素都有自己特征的光电子线,它是元素定性分析的主要依据。谱图中强度最大、峰宽最小、对称性最好的谱峰,称为XPS 的主谱线。实例说明一:上图中

分析X射线荧光光谱仪没有峰位信号的原因

  1、探测器的前置放大电路出现故障,出现的噪声信号为电路噪声,不是X射线信号。  2、测角仪的θ和2θ耦合关系发生混乱,通常是控制θ和2θ耦合关系的CMOS中的数据由于电池漏电等原因丢失,这时需要重新对光。