铁磁薄膜与极性ZnO表面相互作用的同步辐射光电子能谱
随着近年来高密度存储设备的发展需求,Fe、Co等磁性超薄膜与各种氧化物衬底的界而研究引起了广泛的关注,包括薄膜的磁性,界而的电性能,化学稳定性在内的一系列界面的物理化学性能都成了研究的重点。随着磁性薄膜在氧化物表面的生长,界面作用诸如界面的化学态,界面之间的互扩散,以及不同的界面结构都会随着薄膜厚度的增加而相应的变化,而这些界面作用的不同必然导致整个界面性能的改变,通过研究界面作用随厚度的改变可以分析出相应的界面性能的变化,这将对界面体系的应用极具实际意义。同时,通过界面的退火可以有效促进磁性介质向氧化物中的扩散,这种方法正作为稀磁半导体的一种有效制备手段而得到重视。本文主要通过光电子能谱技术研究了磁性Fe、Co金属超薄膜在极性ZnO(000+1)表而的生长和退火时电子结构的变化,并辅以原子力显微镜(AFM)和场发射扫描电子显微镜(FESEM),以及超导量子干涉仪(SQUID)等对样品的表面形貌,磁性等作相应的考察。主要的研究结......阅读全文
铁磁薄膜与极性ZnO表面相互作用的同步辐射光电子能谱
随着近年来高密度存储设备的发展需求,Fe、Co等磁性超薄膜与各种氧化物衬底的界而研究引起了广泛的关注,包括薄膜的磁性,界而的电性能,化学稳定性在内的一系列界面的物理化学性能都成了研究的重点。随着磁性薄膜在氧化物表面的生长,界面作用诸如界面的化学态,界面之间的互扩散,以及不同的界面结构都会随着薄膜厚度
FeZnO界面的同步辐射研究
金属-氧化物界面(Metal-oxide interface)在很多先进的应用材料中起着非常重要的作用,有时甚至起着决定性的作用,比如:功能金属陶瓷材料、氧化物弥散强化合金、金属的氧化物防护、催化剂等等。众所周知,材料的宏观性质是由其微观结构所决定的,因此,为了改善材料的宏观性能,有必要弄清楚材料的
Mg预处理蓝宝石衬底法制备的Zn极性ZnO外延薄膜的结构
通过分子束外延法在经Mg预处理的蓝宝石衬底上制备了ZnO单晶薄膜,利用高分辨透射电镜、电子全息和X射线能谱对该薄膜的结构进行了细致的研究。结果表明,在蓝宝石衬底上预沉积一层很薄的Mg层,可以生长均匀Zn极性的ZnO外延薄膜。ZnO/MgO/蓝宝石的界面非常清晰锐利,同时在界面处可以观察到大约3个原子
同步辐射的应用
同步辐射能为各相关科学研究提供连续谱、高强度、高准直性的优质光源,为研究物质的微观动态结构和各种瞬态的过程提供前所未有的手段和机会,是物理学、化学、材料科学、生命科学、医学等领域最先进又不可替代的工具。
同步辐射的特点
同步辐射具有以下特点: (1) 高准直、方向性强 同步辐射光的发散集中在一电子运动方向为中心的一个很窄的圆锥内,张角非常小,几乎是平行的。 (2) 宽波段、连续可调 同步辐射是一个联系可调的波谱,从红外到几千KeV能量的硬X射线均有分布。可根据需要,利用单色器选取不同波长的单色光。 (
AlxZn1xO薄膜光电性能的研究与应用
ZnO是一种被广泛关注的宽禁带半导体,在室温下,其禁带宽度为3.37eV,能量对应于光谱中的近紫外波段,可用来对该波段的辐射进行探测;激子束缚能60meV,可用于制备室温下的短波长激光器件;热稳定性和化学稳定性高且抗辐射能力强,制备的器件适用范围广且寿命长。ZnO在掺入低浓度Al离子时可以形成良好的
同步辐射光源的概述
同步辐射光源 是指产生同步辐射的物理装置。第一代同步辐射光源是寄生于高能物理实验专用的高能对撞机的兼用机,第二代同步辐射光源是基于同步辐射专用储存环的专用机,第三代同步辐射光源为性能更高且储存环之直线段可加装插件磁铁组件之同步辐射专用储存环的专用机,现在正在研究的自由电子激光器则为新一代的高强度光源
同步辐射的发展历史
1947年,美国通用电气公司在同步加速器上做实验时,首次在环形加速器的管壁上观察到同步辐射现象。截至目前,同步辐射已经经过了四代的发展。 1970s末,第一代同步辐射与高能物理研究兼用,属于寄生方式。即主要依托在高能物理研究所建造的单子加速器和储存环上运行。例如北京同步辐射装置BSRF。 1
同步辐射是什么?
同步辐射是速度接近光速的带电粒子在磁场中沿弧形轨道运动时(受到径向的加速度,v⊥a),沿着偏转轨道切线方向发射连续谱的电磁波。由于是1947年在美国通用电气公司的一个电子同步加速器中意外发现的,因此命名为同步辐射。 1895年11月8日,德国科学家伦琴发现X射线,从此科学领域多了一种行之有效的
同步辐射光源特点
与XRD相比,同步辐射的光强强很多,可以做很精细的扫描,高温或高压条件下同步辐射的优势比常规X光机衍射明显很多。尤其在超高压下,百万大气压,同步辐射的光斑可以聚焦到亚微米级别,直接测量高压下的衍射,如果同时再加高温,那就可以研究高压高温下的融化,这是常规衍射不可企及的。
Ag、Cu、Au在同步辐射光激发下的光电子能谱实验分析
实验采用同步辐射光源作为激发光源。分别测定室温和低温条件下,能量范围60-200eV同步辐射光源激发一价贵金属多晶Cu、Ag样品的s、p、d电子所得的光电子能谱。采用能量为650eV同步辐射光源激发多晶Au样品s、p、d以及f电子所得的光电子能谱。运用origin绘图软件画出结合能与相对强度的图像,
Ag、Cu、Au在同步辐射光激发下的光电子能谱实验分析
实验采用同步辐射光源作为激发光源。分别测定室温和低温条件下,能量范围60-200eV同步辐射光源激发一价贵金属多晶Cu、Ag样品的s、p、d电子所得的光电子能谱。采用能量为650eV同步辐射光源激发多晶Au样品s、p、d以及f电子所得的光电子能谱。运用origin绘图软件画出结合能与相对强度的图像,
研究实现反铁磁铁磁转变磁畴直接成像
原文地址:http://news.sciencenet.cn/htmlnews/2023/10/510471.shtm
表面电阻与薄膜厚度的关系
一般来说,本身这个薄膜什么电阻都是固定的,和厚度无关。 但是当薄膜表面有水分子时,表面电阻会下降,通常为了降低薄膜的表面电阻,都是采用加入抗静电剂,薄膜厚度大,析出慢,因而电阻值会大点,但是也是在11次方这个样子,好的话,能达到8次方。 如果是加导电,3-7次方。 外涂的7-10次方
概述同步辐射光源的发展
第一代 是在世界各国为高能物理研究建造的储存环和加速器上“寄生地”运行的。很快地,不仅物理学家,而且化学家、生物学家、冶金学家、材料科学家、医学家和几 乎所有学科的基础研究及应用研究的专家,都从这个新出现的光源看到巨大的机会。然而, 在对储存环性能的要求上,同步辐射的用户与高能物理学家的观点是
同步辐射的原理及特点
1、同步辐射的原理:相对论性带电粒子在电磁场的作用下沿弯转轨道行进时所发出的电磁辐射。2、特点:高亮度(High-brilliance and flux: extremely intense and high energy ):同步辐射光源是高强度光源,有很高的辐射功率和功率密度,第三代同步辐射光源
关于同步辐射的应用介绍
同步辐射在基础科学、应用科学和工艺学等领域已得到广泛应用: ①近代生物学,例如测定蛋白质的结构和蛋白质的分子结构,通过X射线小角散射可研究蛋白质生理活动过程和神经作用过程等的动态变化,通过X射线荧光分析可测定生物样品中原子的种类和含量,灵敏度可达10-9克/克。 ②固体物理学,可用于研究固体
关于同步辐射的特点介绍
同步辐射强度高、覆盖的频谱范围广,可以任意选择所需要的波长且连续可调,因此成为科学研究的一种新光源。 同步幅射具有诸多优良特性,使其成为蛋白质结构研究不可替代的研究工具。 高亮度(High-brilliance and flux: extremely intense and high ene
什么是同步辐射光源
同步辐射(Synchrotron Radiation)是速度接近光速的带电粒子在磁场中沿弧形轨道运动时放出的电磁辐射,由于它最初是在同步加速器上观察到的,便又被称为“同步辐射”或“同步加速器辐射”。长期以来,同步辐射是不受高能物理学家欢迎的东西,因为它消耗了加速器的能量,阻碍粒子能量的提高。但是,人
硅表面铁磁锰单原子纳米线的结构与生长机制研究取得进展
硅半导体表面重构以及表面吸附原子在硅表面上的自组装研究是理论和实验科学工作者长期以来共同关注的重要课题之一。由于MnSi等锰基化合物具有铁磁性和较高的居里温度,因此被认为是最有望实现自旋传导的磁性材料。实验发现,锰在室温下可在硅(001)面上自组装形成单原子纳米线和小纳米团簇,为
我国科学家在单层铁磁材料GdAg2中发现外尔节线
自旋电子学器件的发展在一定程度上依赖于磁性材料的发展。在2017年,科学家首次在实验上获得了二维铁磁材料,引发了该领域的研究热潮,但是实现拓扑性的二维铁磁材料仍面临较大挑战。 中国科学院物理研究所/北京凝聚态物理国家研究中心与北京理工大学以及日本广岛大学的研究人员合作,利用同步辐射角分辨光电子
高能加速器的同步辐射
电子束在同步加速器中会产生同步辐射,这对于提高电子能量来说当然是一件坏事。但所产生的同步辐射,由于强度特大、准直性好、单色性好、而且能谱连续可调等特点,它对分子生物学、表面物理、表面化学、天体物理、非线性光学、半导体器件工艺方面有着非常广泛的应用。例如:对于超大规模集成电路的光刻,有着非常诱
我国学者在新型量子功能材料研制中取得进展
近日,由中国科学技术大学教授陆亚林领导的量子功能材料和先进光子技术研究团队在量子功能材料研究方面取得重要进展。该团队副研究员翟晓芳、副教授傅正平等人,与美国劳伦兹伯克利国家实验室博士Jinghua Guo、中国科大教授赵瑾、湖南大学教授马超等合作,在研究新型高温、高对称性铁磁绝缘体过程中,把高质
同步辐射x荧光分析简介
同步辐射x荧光分析:(synchrotron-basedX-ray fluorescence)采用由加速器产生的同步辐射作光源进行x射线荧光分析的方法。 与常规x射线荧光分析相比,由于同步辐射光通量大、频谱宽、偏振性好等优点,因此分析灵敏度显著增高,此外取样量少,分析速度快,可作微区三维扫描分
同步辐射光源特点之高纯净
同步辐射光是在超高真空(储存环中的真空度为10-7~10-9帕)或高真空(10-4~10-6帕)的条件中产生的,不存在任何由杂质带来的污染,是非常纯净的光。 可精确预知:同步辐射光的光子通量、角分布和能谱等均可精确计算,因此它可以作为辐射计量,特别是真空紫外到X射线波段计量的标准光源。
单层FeSe薄膜电子相图和高温超导电性研究获进展
2012年,清华大学物理系薛其坤研究组和中科院物理研究所表面物理国家重点实验室马旭村研究组在钛酸锶(SrTiO3)衬底上成功制备出单层FeSe薄膜,并在扫描隧道谱上观察到大的能隙,预示着该材料有可能存在接近液氮温区(77K)的高温超导电性【Chin. Phys. Lett. 29 (2012
中国科大利用同步辐射技术实现对二氧化钒薄膜相变调控
近日,中国科学技术大学国家同步辐射实验室邹崇文副研究员和樊乐乐博士等利用同步辐射X射线衍射和倒空间成像技术,在研究二氧化钒超薄膜的外延生长和界面应力调控相变方面取得新进展,该研究成果发表于近期的Nano Letters上。 二氧化钒材料表现出独特的可逆的金属绝缘体相变,这种相变将导致VO2的电
几种半导体材料的光电子能谱研究
ZnO薄膜的光电子能谱研究表明:1)对某些条件下生长的薄膜,光致发光谱中存在的绿光发光峰来源于薄膜中介于Vo和Oi中间价态的氧;2)对首次利用溅射夹层GaAs方法制备的As掺杂的ZnO薄膜,O2下退火比较容易控制As的价态,有利于形成p型掺杂。首次采用ErF3到Alq3中的方法制作了1.53μm电发
Ag/CeO2和Ni/CeO2模型催化剂的界面性能
Ce02具有很高的氧储存/释放能力,担载金属的氧化铈催化剂广泛应用于汽车尾气净化、低温水-气变换和乙醇水汽重整等重要的催化反应体系中。以Ce02为载体的金属Ag和Ni催化剂除了在以上重要催化反应中表现出良好的催化活性外,还具有低成本和易制备的特点,因而获得广泛应用。因此从原子-分子水平上研究此类催化
同步辐射X射线微探针的简介
是随着同步辐射光的应用而发展起来的一种新的微区痕量无损分析技术。它是利用同步加速器电子储存环中产生的具有奇异特性(频带宽且连续可调;通量大亮度高;准直性好;高度偏振;具有特定时间结构)的电磁波(通称为同步辐射或同步辐射光),再经准直、聚焦或单色化而形成高亮度的X射线微探针进行样品分析。