日本实现活体生物体内蛋白质状态的可视化

日本九州大学和东京大学的一个联合研究小组日前说,他们利用长约1毫米的线虫进行的实验中,首次成功看到活体生物体内蛋白质变化的情况。 九州大学助教广津崇亮等研究人员对线虫头部嗅觉神经中负责传递气味信号的Ras蛋白质进行了研究。他们通过基因操作,将一种发光颜色会随Ras蛋白质状态变化而变化的分子引入线虫的嗅觉神经细胞。这种分子在Ras蛋白质被激活后会发出黄色荧光,未被激活时发蓝光。 研究人员给线虫施加气味刺激,并拍摄了荧光分子的发光情形。结果发现,在施加刺激后Ras蛋白质立即被激活,约3秒钟后迎来活性峰值,之后恢复非活性化状态。 研究人员施加刺激时使用了大肠杆菌产生的一种气味物质。这种大肠杆菌是线虫的食物。此前的研究表明,线虫在寻找食物时,每隔约3秒钟会摆动一下头部,并朝气味强烈的方向前进。研究人员由此认为,Ras蛋白质参与控制了这种行动。 Ras蛋白质是一类能与鸟苷三磷酸结合的蛋白质,参与细胞内的信号转导......阅读全文

日本实现活体生物体内蛋白质状态的可视化

  日本九州大学和东京大学的一个联合研究小组日前说,他们利用长约1毫米的线虫进行的实验中,首次成功看到活体生物体内蛋白质变化的情况。   九州大学助教广津崇亮等研究人员对线虫头部嗅觉神经中负责传递气味信号的Ras蛋白质进行了研究。他们通过基因操作,将一种发光颜色会随Ras蛋白质状态变化而变化的分子

Ras蛋白的活性介绍

Ras蛋白的活性状态对细胞的生长、分化、细胞骨架、蛋白质运输和分泌等都具有影响,其活性则是通过与GTP或GDP的结合进行调节。

Ras蛋白的结构特点

Ras是大鼠肉瘤(rat sarcoma,Ras)的英文缩写。Ras蛋白是原癌基因 c—ras的表达产物,相对分子质量为21kDa。

Ras蛋白的结构特点

Ras蛋白为膜结合型的GTP/GDP结合蛋白,相对分子质量为2.1万,定位于细胞膜内侧.它由188或189个氨基酸组成,它的第一个结构域为含有85个氨基酸残基的高度保守序列,接下来含有80个氨基酸残基的结构域中,Ras蛋白结构轻微不同,除了K2Ras末端25个氨基酸由于不同的外显子而分为A型和B型外

Ras蛋白的功能介绍

Ras(P21)蛋白位于细胞膜内侧,它在传递细胞生长分化信号方面起重要作用.它属于三磷酸鸟苷(GTP)结合蛋白(一种细胞信息传递的耦联因子),通过GTP与二磷酸鸟苷(GDP)的相互转化来调节信息的传递.P21与GTP和GDP有很强的亲和性,而且有较弱的GTP酶活性.正常情况下P21和GDP结合处于失

Ras蛋白的物质介绍

Ras蛋白是小型GTP结合蛋白大家族中的一员,是由190个氨基酸残基组成的小型GTP结合蛋白,具有GTP水解酶活性,分布于质膜胞质一侧。通常将“小型GTP结合蛋白”称为“单体GTP水解酶”,以区别于结构是三聚体的G蛋白。Ras蛋白的结构类似于G蛋白的α亚基,起到分子开关的功能。Ras蛋白的构象在两个

关于Ras蛋白的物质介绍

  Ras蛋白是小型GTP结合蛋白大家族中的一员,是由190个氨基酸残基组成的小型GTP结合蛋白,具有GTP水解酶活性,分布于质膜胞质一侧。通常将“小型GTP结合蛋白”称为“单体GTP水解酶”,以区别于结构是三聚体的G蛋白。Ras蛋白的结构类似于G蛋白的α亚基,起到分子开关的功能。Ras蛋白的构象在

Ras蛋白的物质调节介绍

Ras的活性受两个蛋白的控制,一个是鸟苷交换因子(guanine nucleotide exchange factor, GEF),它的作用是促使GDP从Ras蛋白上释放出来,取而代之的是GTP,从而将Ras激活,GEF的活性受生长因子及其受体的影响。另一个控制Ras蛋白活性的是GTP酶激活蛋白(G

关于Ras蛋白的结构介绍

  Ras蛋白为膜结合型的GTP/GDP结合蛋白,相对分子质量为2.1万,定位于细胞膜内侧.它由188或189个氨基酸组成,它的第一个结构域为含有85个氨基酸残基的高度保守序列,接下来含有80个氨基酸残基的结构域中,Ras蛋白结构轻微不同,除了K2Ras末端25个氨基酸由于不同的外显子而分为A型和B

Ras蛋白的物质调节作用

Ras的活性受两个蛋白的控制,一个是鸟苷交换因子(guanine nucleotide exchange factor, GEF),它的作用是促使GDP从Ras蛋白上释放出来,取而代之的是GTP,从而将Ras激活,GEF的活性受生长因子及其受体的影响。另一个控制Ras蛋白活性的是GTP酶激活蛋白(G

线虫蛋白可用于杀灭害虫

  作为微小蠕虫的线虫,在动物王国中经常落入被忽略的角落。尽管线虫当中很多是寄生的,意味着它们生活在其他生物有机体里,但也有助于控制人体疾病、杀死破坏农作物的昆虫。  线虫的这些“良好品质”吸引了美国加利福尼亚大学河滨校区助理教授Adler Dillman的关注。近日他和几位合作者在《PLOS 病原

绿色荧光蛋白分子标记的研究

  分子标记  作为一种新型的报告基因,GFP已在生物学的许多研究领域得到应用。利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签(protein tagging),即利用DNA重组技术,将目的基因与GFP基因构成融合基因,转染合适的细胞进行表达,然后借助荧光显微镜便可对标记的蛋白质进行细胞内

关于Ras蛋白的物质调节的介绍

  Ras的活性受两个蛋白的控制,一个是鸟苷交换因子(guanine nucleotide exchange factor, GEF),它的作用是促使GDP从Ras蛋白上释放出来,取而代之的是GTP,从而将Ras激活,GEF的活性受生长因子及其受体的影响。另一个控制Ras蛋白活性的是GTP酶激活蛋白

研究发现阿司匹林抗线虫衰老分子机理

  阿司匹林作为一个非甾体类抗炎药已经使用超过一个世纪,其长期广泛被用于解热、镇痛、抗炎。由于其能抑制血小板聚集,近年又用于防治心绞痛、心肺梗塞、脑血栓。目前也有报道长期服用阿司匹林能够改善很多健康状况,但其分子机制尚未阐明。   中国科学院昆明植物研究所罗怀容研究组发现阿司匹林抗线虫衰老及其新作

RAS蛋白研究复兴开辟癌症治疗新战场

  经过30年的追寻,科学家试图发明可以治疗致命致癌蛋白家族——Ras蛋白——的药物研究失败了。现在,他们希望通过另外一种全新的方法实现这一目标。  当Stephen Fesik离开制药行业并筹建理论药物发现实验室时,他草拟了一份“通缉单”:上面列着迄今为止科学上已知的5种最重要的致癌蛋白。这些蛋白

Cell:这个小分子或攻克RAS无成药性难题!

  RAS基因是一个“臭名昭著”的致癌基因,在超过30%的肿瘤中,这个基因都会产生突变。但自从1982年发现它以来,三十多年过去了,一直没有药物能够成功攻克这个难题。RAS也成为了所谓“无成药性”(Undruggable)靶点。  这一情况有望在近期得到解决。在上周发表在著名科学期刊《Cell》上的

分子荧光和分子磷光

  分子和原子一样,也有它的特征分子能级,分子内部的运动可分为价电子运动、分子内原子在平衡位置附近的振动和分子绕其重心的转动。因此分子具有电子能级、振动能级和转动能级。  分子从外界吸收能量后,就能引起分子能级的跃迁,即从基态跃迁到激发态,分子吸收能量同样具有量子化的特征,即分子只能吸收等于二个能级

癌基因蛋白Ras变构动力学机制揭示

   记者从中国科学技术大学获悉,该校龙冬教授课题组运用液体核磁共振波谱方法,在癌基因蛋白Ras活性态变构动力学研究领域取得重要新进展,相关成果日前发表在学术期刊《德国应用化学》上。  作为细胞内关键的信号转导分子,Ras蛋白的活性改变与人类恶性肿瘤的发生密切相关,也因此成为抗癌药物研制的重要靶标。

-Nature:RAS蛋白研究复兴,开辟癌症治疗新战场

  当Stephen Fesik离开制药行业并筹建理论药物发现实验室时,他草拟了一份“通缉单”:上面列着迄今为止科学上已知的5种最重要的致癌蛋白。这些蛋白可以促进肿瘤生长,但是对于药物研发人员来说:它们却因为太光滑、太懒惰或是太烦琐,而难以与药物结合或被抑制。  Fesik添加到他名单中的

分子荧光寿命

荧光寿命(lifetime):去掉激发光后,分子的荧光强度降到激发时最大荧光强度的1/e(备注:e为自然对数的底数,其值约为2.718)所需要的时间,称为荧光寿命.荧光分子处于S1激发态的平均寿命,可用下式表示:τ f = 1 /(kf + ΣK)(典型的荧光寿命在10-8~10-10s)  kf表

简述ras基因的基因结构

  ras基因在进化中相当保守,广泛存在于各种真核生物如哺乳类,果蝇,真菌,线虫及酵母中,提示它有重要的生理功能.哺乳动物的ras基因家族有三个成员,分别是H-ras,K-ras,N-ras,其中K-ras的第四个外显子有A,B两种变异体.各种ras基因具有相似的结构,均由四个外显子组成,分布于全长

ras基因的基因结构

ras基因在进化中相当保守,广泛存在于各种真核生物如哺乳类,果蝇,真菌,线虫及酵母中,提示它有重要的生理功能.哺乳动物的ras基因家族有三个成员,分别是H-ras,K-ras,N-ras,其中K-ras的第四个外显子有A,B两种变异体.各种ras基因具有相似的结构,均由四个外显子组成,分布于全长约3

Ras-Signaling-Pathway

Ras activates many signaling cascades. Here we illustrate some of the well-characterized cascades in a generic compilation of effector molecules. The

单分子荧光染料——ATTO荧光染料

单分子荧光检测技术是近十年来迅速发展起来的一种超灵敏的检测技术,其检测尺度可以精确到纳米量级,是单分子检测的首选方法。该检测技术利用荧光标记来显示和追踪单个分子的构象变化、动力学、单分子之间的相互作用以及进行单分子操纵。而荧光染料作为重要的标记物在单分子检测中起到了举足轻重的作用。荧光染料,指吸收某

单分子荧光染料——ATTO荧光染料

单分子荧光检测技术是近十年来迅速发展起来的一种超灵敏的检测技术,其检测尺度可以精确到纳米量级,是单分子检测的首选方法。该检测技术利用荧光标记来显示和追踪单个分子的构象变化、动力学、单分子之间的相互作用以及进行单分子操纵。而荧光染料作为重要的标记物在单分子检测中起到了举足轻重的作用。荧光染料,指吸收某

分子荧光镜像规则

  基态上的各振动能级分布与第一激发态上的各振动能级分布类似;基态上的零振动能级与第一激发态的二振动能级之间的跃迁几率最大,相反跃迁也然。

分子荧光跃迁类型

分子荧光 跃迁类型

单分子荧光检测

单分子检测被称为分析化学的极限,近年来取得了重要进展。其中,单分子荧光分析是实现单分子检测最灵敏的光分析技术。单分子荧光检测的关键在于确保被照射的体积中只有一个分子与激光发生作用以及消除杂质荧光的背景干扰。通常采用高效滤光片,利用共焦、近场合消失波激发,可以达到此目的。单分子荧光检测可提供单分子水平

依赖于Ras的蛋白激酶的基本信息

中文名称依赖于Ras的蛋白激酶英文名称Ras-dependent protein kinase定  义特指需要由活化的(结合GTP的)Ras激活的一类蛋白激酶。应用学科生物化学与分子生物学(一级学科),酶(二级学科)