药物中对高速逆流色谱的应用
一、制备中药化学成分对照品国内外学者已采用高速逆流色谱技术分离提纯了许多中药化学成分对照品, 如从金银花中分离绿原酸(纯度94.8%), 从黄芪中分离异黄酮苷(95%),从紫草中分离紫草宁(98.9%),从二氢杨梅素粗提物中纯化二氢杨梅素川(99%), 从虎仗中分离白黎芦醇(99%), 从肉苁蓉acleoside(98%),从丹参中分离隐丹参酮(98.8%),从大黄中分离大黄素甲醚、芦荟大黄酸、大黄酸、大黄粉、大黄素(98%), 从毛柳苷粗提物中纯化毛柳苷(98%)等。二、分离蛋白质和多肽 高速逆流色谱装置用于分离制备蛋白质和多肽, 需要强极性并具有较高的粘度的溶剂系统, 为了获得合适的固定相保留值, 大部分都采用X型的CPC。目前, 聚合物双水相溶剂体系、新型的PCCC以及ICCC的出现和发展则为成功分离蛋白质和多肽提供了有利的条件。用高速逆流色谱分离的有卵白蛋白、乙醇脱氢酶(ADH)、乳酸脱氢酶(LDH)、DNA结......阅读全文
高速逆流色谱(HSCCC)的原理简介
高速逆流色谱分离原理结合了液液萃取和分配色谱的优点,是一种不需任何固态载体或支撑的液-液分配色谱技术,其基本分离原理与其他同类色谱技术相同,主要是利用物质在两相间分配系数的差别进行分配。而HSCCC将两溶剂的分配体系置于高速旋转的螺旋管内,螺旋管的运动形式,是在自身自转的基础上,同时绕一公转轴旋
高速逆流色谱的发展史
高速逆流色谱的发展史1.20世纪70年代,出现了液滴逆流色谱(DCCC)特点:(1)流体静力学原理(Hydrostatic equilibrium system,HSES)(2)分离时间过长、连接处容易出现渗漏等2.20世纪70年代出现了离心分配色谱仪(Centrifugal partition c
高速逆流色谱的发展趋势
为了克服HSCCC理论研究相对滞后的不足,有不少研究人员正从事理论研究,试图建立完善的理论基础来指导溶剂体系的选择,以期使HSCCC尽快从一种分离技术发展成为一门分离科学。HSCCC一种独特的不用固态载体的液液分配色谱技术,是一种能实现连续有效分离的实用分离制备技术,能采用多种多样的溶剂系统对任
关于高速逆流色谱的基本介绍
高速逆流色谱的固定相和流动相都是液体,没有不可逆吸附,具有样品无损失、无污染、高效、快速和大制备量分离等优点。由于HSCCC与传统的分离纯化方法相比具有明显的优点,因此此项技术己被广泛应用于中药成分分离、保健食品、生物化学、生物工程、天然产物化学、有机合成、环境分析等领域。 我国是继美国、日本
高速逆流色谱的构造及特点
构造 仪器的中心部分:(a) ITO多层线圈分离柱,它是由100-200米长、内径为1.6mm左右的聚四氟乙烯管沿具有适当内径的内轴共绕十多层而成,其管内总体积可达300mL左右。(b)平衡器,它可以调节重量,它的作用是让(a), (b)相对于中心轴两边重量平衡。当在旋转控制器的控制下,在齿轮
高速逆流色谱色谱仪的基本配置
仪器的中心部分:(a) ITO多层线圈分离柱,它是由100-200米长、内径为1.6mm左右的聚四氟乙烯管沿具有适当内径的内轴共绕十多层而成,其管内总体积可达300mL左右。(b)平衡器,它可以调节重量,它的作用是让(a), (b)相对于中心轴两边重量平衡。当在旋转控制器的控制下,在齿轮传动装置
高速逆流色谱技术在天然产物研究方面的应用
摘 要 高速逆流色谱作为天然产物研究中必不可少的工具,本文阐述了高速逆流色谱的设计原理、以及分离原理和特点,介绍了X-axis CPC、DuCCC、pH-zone-refining CCC 等一些新技术,并对高速逆流色谱技术在天然产物分离纯化和研制方面的应用进行了详细综述,包括对有机酸、内酯、多酚、
高速逆流色谱分离制备茶粕中茶皂素单体
摘 要:目的:建立一种高效、快速的分离制备茶皂素单体的高速逆流色谱方法。方法:微波辅助提取茶皂素后,用D-101 大孔树脂初步纯化,所得粗品经高速逆流色谱分离纯化,乙酸乙酯- 正丁醇- 水(1:4:4,V/V,含体积分数3% 的乙酸)为两相溶剂系统,转速800r/min、流速1.5mL/min、检测
高速逆流色谱分离纯化紫苏叶中迷迭香酸
摘要目的: 建立高速逆流色谱分离纯化紫苏叶中迷迭香酸的方法。方法: 采用高速逆流色谱分离纯化紫苏叶乙酸乙酯萃取部分中迷迭香酸,以石油醚- 乙酸乙酯- 甲醇- 0. 5%醋酸水溶液( 2∶ 5∶ 2∶ 5) 为溶剂体系,上相为固定相,下相为流动相,流速2. 0 mL·min - 1 ,主机转速800
高速逆流色谱分离纯化紫苏叶中迷迭香酸
摘要目的: 建立高速逆流色谱分离纯化紫苏叶中迷迭香酸的方法。方法: 采用高速逆流色谱分离纯化紫苏叶乙酸乙酯萃取部分中迷迭香酸,以石油醚- 乙酸乙酯- 甲醇- 0. 5%醋酸水溶液( 2∶ 5∶ 2∶ 5) 为溶剂体系,上相为固定相,下相为流动相,流速2. 0 mL·min - 1 ,主机转速800
高速逆流色谱分离制备紫锥菊中的菊苣酸
摘 要 建立了高速逆流色谱分离制备紫锥菊有效成分菊苣酸的新方法。溶剂系统为V (正己烷) ∶V (乙酸乙酯) ∶V (甲醇) ∶V (0. 5%乙酸) = 1∶4∶2∶5. 5,上相为固定相,下相为流动相。从200 mg紫锥菊粗提物一次分离得到纯度为96. 8%的菊苣酸33. 6 mg,并用LC2M
高速逆流色谱制备分离中药黄柏中的生物碱
高速逆流色谱制备分离中药黄柏中的生物碱高速逆流色谱是一种不用固态支撑体或载体的液液分配色谱技术,它建立在单向性流体动力平衡体系之上。在内径约1.6mm左右的细管绕成的螺旋管柱里,互不相溶的两相溶剂能在重力场的作用下形成分段状态。在螺旋管的高速转动下,两相就会沿螺旋管纵向完全分开,并且两相各自占据一端
如何选型高速逆流色谱仪
高速逆流色谱仪是一种新的液相色谱技术,利用液液两相的逆流分配,在没有固体填料、不需使用固态固定相的情况下,而是利用离心力产生的恒定力将固定相保留在由管道连接的一系列的腔体中,实现复杂化学物质的混合物分离。它以液体溶剂为固定相,螺旋柱在行星运动时产生的离心力,使互不相溶的两相不断互相混合,同时保留其中
高速逆流色谱常用基本溶剂体系
高速逆流色谱常用基本溶剂体系表被分离物质种类基本两相溶剂体系辅助溶剂非极性或弱极性物质正庚(己)烷-甲醇氯烷烃正庚(己)烷-乙睛氯烷烃正庚己烷-甲醇(或乙睛)-水氯烷烃中等极性物质氯仿-水甲醇、正丙醇、异丙醇乙酸乙酯-水正己烷、甲醇、正丁醇极性物质正丁醇-水甲醇、乙酸上表中是根据被分离物质的极性列出
如何选型高速逆流色谱仪?
高速逆流色谱仪是一种新的液相色谱技术,利用液液两相的逆流分配,在没有固体填料、不需使用固态固定相的情况下,而是利用离心力产生的恒定力将固定相保留在由管道连接的一系列的腔体中,实现复杂化学物质的混合物分离。它以液体溶剂为固定相,螺旋柱在行星运动时产生的离心力,使互不相溶的两相不断互相混合,同时保留其中
简介高速逆流色谱的技术发展
1、20世纪70年代,出现了液滴逆流色谱(DCCC)特点: (1)流体静力学原理(Hydrostatic equilibrium system,HSES) (2)分离时间过长、连接处容易出现渗漏等 2、20世纪70年代出现了离心分配色谱仪(Centrifugal partition chr
高速逆流色谱的影响因素有哪些?
1、固定相的保留值 在逆流色谱中,留在管中固定相的量是影响溶质峰分离度的一个重要因素,高保留量将会大大改进峰分离度。 仪器对保留值的影响(外因) 研究表明:螺旋管支持件的自转半径r与公转半径R之比B值是一个影响两相互不混溶溶剂在旋转螺旋管内保留的关键因素。用大直径的支持件使值进一步提高,能导
简介高速逆流色谱的仪器结构介绍
仪器的中心部分: (a) ITO多层线圈分离柱,它是由100-200米长、内径为1.6mm左右的聚四氟乙烯管沿具有适当内径的内轴共绕十多层而成,其管内总体积可达300mL左右。(b)平衡器,它可以调节重量,它的作用是让(a), (b)相对于中心轴两边重量平衡。当在旋转控制器的控制下,在齿轮传动
高速逆流色谱的突出优点有哪些?
(1)无不可逆吸附。聚四氟乙烯管中的固定相无需载体液 -液色谱系统,故而消除了气 -液和固 -液色谱中因使用载体而带来的吸附现象,特别适于分离极性物质和生物活性物质; (2)高回收率。由于流动相和固定相均为液体,样品可全部回收,分离纯化与制备可同步完成,故特别适于制备性分离; (3)操作简便
高速逆流色谱的溶剂体系相关介绍
通常来说,溶剂系统应该满足以下要求:溶剂系统不会造成样品的分解或变性样品中各组分在溶剂系统中有合适的分配系数,一般认为分配系数在0.2-5的范围内是较为合适的,并且各组分的分配系数值要有足够的差异,分离因子最好大于或等于1.5;溶剂系统不会干扰样品的检测;为了保证固定相的保留率不低于50%,溶剂
高速逆流色谱仪的研究热点
近年来,溶剂体系的选择范围越来越宽泛,有人提出用超临界二氧化碳做流动相,利用它的高扩散性、低粘度、流体特性及环境友好等其他溶剂不可比拟的优势分离化合物,还有人提出用制冷剂做流动相的可能性。还有人提出将三相溶剂体系用于高速逆流色谱分离中,可以对宽极性范围的样品进行很好的分离。目前三相溶剂还只用于标
高速逆流色谱的发展历史与优势
高速逆流色谱属于逆流色谱的范畴,逆流色谱是一种新型的分离手段,它的主要分离原理是利用样品在固定相和流动相之间的差异也就是分配比不同而进行分离的,值得注意的是逆流色谱的固定相和流动相都是液体,其主要优点是没有传统色谱的死吸附,样品的回收率高等特点。 逆流色谱源于逆流分溶法,也就是用实验室经常使用
高速逆流色谱的发展历史与优势
逆流色谱源于逆流分溶法,也就是用实验室经常使用的分液漏斗进行连续的液液萃取,根据样品在两种互不相溶的溶剂中分配比不同而进行分离。 逆流色谱早期发展的方法有液滴逆流色谱,旋转小室逆流色谱等。但是作为一种分离手段,早期发展的逆流色谱不能满足高效快速的分离,分离的周期很长,效率很低。 在70年代,
高速逆流色谱的发展历史与优势
高速逆流色谱属于逆流色谱的范畴,逆流色谱是一种新型的分离手段,它的主要分离原理是利用样品在固定相和流动相之间的差异也就是分配比不同而进行分离的,值得注意的是逆流色谱的固定相和流动相都是液体,其主要优点是没有传统色谱的死吸附,样品的回收率高等特点。 逆流色谱源于逆流分溶法,也就是用实验室经常使用
高速逆流色谱法的技术特点
1.应用范围广,适应性好 由于溶剂系统的组成及配比可以是无限多的,因而从理论上讲可以适用于任何极性范围内样品的分离,在分离天然化合物方面具有其独到之处。由于聚四氟乙烯管中的固定相为液体不需要固相载体,因而可以消除固-液色谱中由于使用固相载体而带来的吸附损失,特别适用于分离极性物质。 2.操作
高速逆流色谱法的发展简史
二十世纪六十年代,首先在日本,随后在美国国家医学研究院发现了一种有趣的现象:即互不相溶的两相溶剂在绕成螺旋形的小孔径管子里分段割据,并能实现两溶剂相之间的逆向对流。Ito及其后来者在此基础上研究并设计制造出了一系列逆流色谱装置,早期的是封闭型的螺旋管行星式离心分离仪CPC(coil planet
高速逆流色谱的发展历史与优势
高速逆流色谱属于逆流色谱的范畴,逆流色谱是一种新型的分离手段,它的主要分离原理是利用样品在固定相和流动相之间的差异也就是分配比不同而进行分离的,值得注意的是逆流色谱的固定相和流动相都是液体,其主要优点是没有传统色谱的死吸附,样品的回收率高等特点。 逆流色谱源于逆流分溶法,也就是用实验室经常使用
详述高速逆流色谱法的前景
近年来,溶剂体系的选择范围越来越宽泛,有人提出用超临界二氧化碳做流动相,利用它的高扩散性、低粘度、流体特性及环境友好等其他溶剂不可比拟的优势分离化合物,还有人提出用制冷剂做流动相的可能性。还有人提出将三相溶剂体系用于 高速逆流色谱分离中,可以对宽极性范围的样品进行很好的分离。目前三相溶剂还只用于
高速逆流色谱法快速分离制备枸杞中莨菪亭
摘要: 建立了用高速逆流色谱( HSCCC) 从枸杞中快速分离莨菪亭的方法。将枸杞的乙醇提取物经D-101 大孔树脂初步纯化后直接进行高速逆流色谱分离,用薄层色谱-荧光法考察了莨菪亭在不同溶剂体系中的分配情况。结果表明,最佳的溶剂体系为氯仿-甲醇-水( 10∶ 7∶ 3,v /v /v) ,取上相为
固定相保留率在高速逆流色谱中的重要性
动态高速逆流色谱仪在运行过程中,色谱柱线圈在公转和自转的二维方向上高速旋转,维持很高的离心力,即“G”力,它与公转半径、自转半径、旋转速度等因素有关,其目的是将固定相保持在色谱柱线圈中,而不被流动相推出,“G”力的大小最终体现在固定相保留率上,因而固定相保留率是衡量一台高速逆流色谱仪的最重要指标,固