高速逆流色谱法快速分离制备枸杞中莨菪亭
摘要: 建立了用高速逆流色谱( HSCCC) 从枸杞中快速分离莨菪亭的方法。将枸杞的乙醇提取物经D-101 大孔树脂初步纯化后直接进行高速逆流色谱分离,用薄层色谱-荧光法考察了莨菪亭在不同溶剂体系中的分配情况。结果表明,最佳的溶剂体系为氯仿-甲醇-水( 10∶ 7∶ 3,v /v /v) ,取上相为固定相,下相为流动相,在主机转速为850 r /min、流速为1. 5 mL/min、检测波长为365 nm 的条件下,从200 mg 样品中一次性分离制备可得到10. 2 mg 纯度达到98. 3%的莨菪亭。制备所得的莨菪亭与对照品的高效液相色谱( HPLC) 保留时间一致,且经核磁共振氢谱、碳谱鉴定结构; 纯度经HPLC 法测定。研究发现,氯仿-甲醇-水( 10∶ 7∶ 3,v /v /v) 体系可连续二次进样而样品的峰形未受明显的影响。实验结果表明用薄层色谱-荧光法可快速选定HSCCC 溶剂体系,进而可快速、简便地制备高纯度的莨......阅读全文
高速逆流色谱法快速分离制备枸杞中莨菪亭
摘要: 建立了用高速逆流色谱( HSCCC) 从枸杞中快速分离莨菪亭的方法。将枸杞的乙醇提取物经D-101 大孔树脂初步纯化后直接进行高速逆流色谱分离,用薄层色谱-荧光法考察了莨菪亭在不同溶剂体系中的分配情况。结果表明,最佳的溶剂体系为氯仿-甲醇-水( 10∶ 7∶ 3,v /v /v) ,取上相为
高速逆流色谱法分离制备刺梨黄酮成分
摘 要:应用高速逆流色谱法分离制备了刺梨中的黄酮类成分。以氯仿- 甲醇- 水(4:4:2,V/V)为两相溶剂系统,在主机转速为800r/min、流速1.0ml/min、检测波长254nm 条件下进行分离制备,所得分离收集液经高效液相色谱法检测,结果表明,从刺梨黄酮粗提物中分离得到了纯度分别为75.
高速逆流色谱法分离制备沉香中的沉香四醇
摘要:目的:研究高速逆流色谱分离制备沉香中2-(2-苯乙基)色酮类活性成分的方法。方法:采用氯仿-甲醇-水(4 ∶ 2. 6 ∶2. 4)为两相溶剂体系,上相为固定相,流速1. 2 mL/min,正向转速900 rpm。结果:利用高速逆流色谱法从沉香95% 乙醇粗提物中一次性分离得到两个2-(2-苯
高速逆流色谱法分离制备蓖麻籽中的蓖麻碱
摘 要:利用高速逆流色谱法对蓖麻籽中蓖麻碱粗提物进行纯化,以液相色谱对纯化结果进行检测,用质谱、核磁对纯化产物进行结构确定。去壳后的蓖麻籽经过石油醚- 乙醚(2:1,V/V)脱脂,以95% 乙醇索式提取,所得产物浓缩、冻干后得到蓖麻碱粗提物。采用三氯甲烷- 甲醇- 水(2:1:1,V/V)两相溶剂体
高速逆流色谱法分离制备丹酚酸B
摘 要:采用高速逆流色谱法分离纯化丹参水溶性成分丹酚酸类物质,制备丹酚酸B 化学对照品。分离采用的溶剂系统为正己烷2乙酸乙酯2水2甲醇(1. 5 :5 :5 :1. 5) ,上相做固定相,下相做流动相,流速为1. 7 mL/ min ,仪器转速850 rpm ,进样量80 mg ,纯度用HPLC
高速逆流色谱分离制备胡椒中的胡椒碱
摘 要:采用高速逆流色谱(high-speed countercurrent chromatography,HSCCC)法从胡椒中分离制备胡椒碱。HSCCC的溶剂系统条件为正己烷- 乙酸乙酯- 甲醇- 水(1:1:1:1,V/V)。从5g 粗提物中可一次分离得到纯度为98.72% 的胡椒碱单体1.5
高速逆流色谱分离制备茶粕中茶皂素单体
摘 要:目的:建立一种高效、快速的分离制备茶皂素单体的高速逆流色谱方法。方法:微波辅助提取茶皂素后,用D-101 大孔树脂初步纯化,所得粗品经高速逆流色谱分离纯化,乙酸乙酯- 正丁醇- 水(1:4:4,V/V,含体积分数3% 的乙酸)为两相溶剂系统,转速800r/min、流速1.5mL/min、检测
高速逆流色谱分离制备紫锥菊中的菊苣酸
摘 要 建立了高速逆流色谱分离制备紫锥菊有效成分菊苣酸的新方法。溶剂系统为V (正己烷) ∶V (乙酸乙酯) ∶V (甲醇) ∶V (0. 5%乙酸) = 1∶4∶2∶5. 5,上相为固定相,下相为流动相。从200 mg紫锥菊粗提物一次分离得到纯度为96. 8%的菊苣酸33. 6 mg,并用LC2
高速逆流色谱制备分离中药黄柏中的生物碱
高速逆流色谱制备分离中药黄柏中的生物碱高速逆流色谱是一种不用固态支撑体或载体的液液分配色谱技术,它建立在单向性流体动力平衡体系之上。在内径约1.6mm左右的细管绕成的螺旋管柱里,互不相溶的两相溶剂能在重力场的作用下形成分段状态。在螺旋管的高速转动下,两相就会沿螺旋管纵向完全分开,并且两相各自占据一端
高速逆流色谱制备分离紫甘薯花色苷
摘要采用高速逆流色谱法分离纯化紫甘薯花色苷。以正丁醇-乙酸乙酯-0. 5% 乙酸( 3∶ 1∶ 4,V/V) 为溶剂体系,上相为固定相,下相为流动相,流速2 mL/min,进样量300 mg,分离得到两种花色苷的混合物; 混合物再以0. 2% 三氟乙酸-正丁醇-甲基叔丁基醚-乙腈( 6∶ 5∶ 2∶
制备型高速逆流色谱分离纯化香菇多糖
摘 要 利用高速逆流色谱仪, 研究了双水相系统对香菇多糖的分离。溶剂系统为w ( PEG1000 ) ∶w (K2HPO4 ) ∶w (KH2 PO4 ) ∶w (H2O) = 0. 5∶1. 25∶1. 25∶7. 0,在转速为500 r/min,流速为1. 5 mL /min的条件下,成功分离了
高速逆流色谱法从秦艽地上部分制备分离龙胆苦苷
摘 要 采用高速逆流色谱法分离纯化秦艽地上部分中的龙胆苦苷。溶剂系统为V (氯仿) ∶V (甲醇) ∶V (水) =4∶4∶2, 上相为固定相,下相为流动相,转速为800 r/min,流速为2 mL /min。所得产物经LC2MS分析为龙胆苦苷,纯度经高效液相色谱分析为94. 0% (峰面积归一化
高速逆流色谱法分离纯化绿原酸研究
摘 要:利用高速逆流色谱技术分离纯化金银花中的绿原酸。选择正丁醇- 冰乙酸- 水(4:1:5,V/V)系统来分离,分离结果经高效液相(HPLC)检测纯度达到98.1%,绿原酸的得率为95%。关键词:绿原酸;高速逆流色谱;分离 绿原酸(chlorogenic acid)为多酚类化合物,具有抗菌、
高速逆流色谱法分离纯化红曲色素组分
摘 要:采用高速逆流色谱法(HSCCC)分离纯化红曲发酵产品中6种Azaphilone类色素组分。筛选弱极性分离溶剂系统正己烷- 醋酸乙酯- 甲醇- 水,研究6 种色素组分在不同溶剂体系中的分配系数,建立两步逆流萃取分离的技术路线。经过HPCCC 分离纯化和丙酮结晶操作,得到6 种高纯度的Azaph
制备型高速逆流色谱分离纯化长松萝中的松萝酸
摘 要:利用制备型高速逆流色谱分离纯化长松萝中的松萝酸,经过高效液相色谱、核磁共振检测,确定其纯度及结构。将长松萝破碎后用石油醚(60~90℃)回流浸提4h,浸提液经过滤浓缩后得到松萝酸粗提物。采用正己烷:乙腈:乙酸乙酯:水(8:7:5:0.8,V/V)的两相体系将所得的粗提物进行制备型高速逆流色
高速逆流色谱在天然产物活性成分分离制备中的应用
摘 要 高速逆流色谱(HSCCC) 是一种新型的液2液分配色谱技术,由于其克服了传统固相载体对样品的死吸附作用而被广泛用于天然产物的分离与制备中。本文从HSCCC 样品制备、分离条件优化、技术进展以及近几年HSCCC 在天然产物有效成分分离制备中的应用等方面进行了综述。 从天然产物活性成分中开
高速逆流色谱法分离茶黄素条件的优化
摘 要:优化高速逆流色谱分离4 种茶黄素的方法。两相溶剂系统为正己烷- 乙酸乙酯- 甲醇- 水- 冰醋酸(1:5:1:5:0.25,V/V),固定相为体系的上相,下相为流动相,流速为2ml/min,仪器转速700r/min,进样量30mg。从茶黄素复合物中分离纯化得到茶黄素、茶黄素-3- 没食子酸
高速逆流色谱分离制备甘草中的甘草苷和芒柄花苷
摘要:应用高速逆流色谱分离制备甘草中的甘草苷和芒柄花苷。将甘草乙酸乙酯提取物经聚酰胺柱粗分后,30%乙醇洗脱物用高速逆流色谱进一步分离,所用两相溶剂系统为乙酸乙酯-水( 5∶ 5,v /v) ,转速850 rpm,流速2. 0 mL/min,检测波长254 nm,从50 mg30%乙醇洗脱物中得到甘
硅胶柱色谱结合高速逆流色谱法分离纯化丹参中丹参酮
摘 要:目的建立硅胶柱色谱结合高速逆流色谱(HSCCC)法分离纯化丹参中丹参酮的方法。方法丹参粗提物经硅胶柱色谱分离,得到组分F1、F2,分别采用石油醚-醋酸乙酯-甲醇-水(4∶3∶4∶2)、(8∶5∶8∶3)的溶剂系统进行HSCCC分离,下相为流动相,体积流量2.0 mL/min,转速850 r/
高速逆流色谱法分离纯化青皮中六种多甲氧基黄酮
摘 要:应用高速逆流色谱法(HSCCC)分离制备了青皮中6种多甲氧基黄酮类( Polymethoxyflavones, PMFs)化合物。以正己烷2乙酸乙酯2甲醇2水(体积比为4∶6∶4∶6)为两相溶剂系统,在主机转速800 r /min、流动相流速2mL /min、检测波长254 nm条件下进行分
高速逆流色谱在天然产物分离中的应用
20世纪80年代,美国国立卫生研究院(National Institutes of Health,NIH)Ito等在液-液分配色谱的基础上发明了高速逆流色谱(high-speed countercurrent chromatography,HSCCC)。HSCCC技术主要有离子对逆流色谱(ion
采用高速逆流色谱法从土贝母中分离制备出贝萼皂苷元
贝萼皂苷元是一种齐墩果酸五环三萜类化合物,土贝母系葫芦科植物土贝母的干燥块茎,始载于清代《本草纲目拾遗》,具有散结、消肿、解毒之功效。皂苷类为土贝母的主要活性成分,含量较大。有文献研究表明贝萼皂苷元具有中等强度的糖原磷酸化酶抑制活性以及抗肿瘤等作用,可作为糖原磷酸化酶抑制剂。目前贝萼皂苷元的提取分离
高速逆流色谱法分离制备大豆异黄酮中大豆苷和染料木苷
摘 要:采用高速逆流色谱法分离纯化大豆异黄酮中的大豆苦和染料木昔。溶剂系统为乙酸乙酯一醋酸一水,体积比为5:1:10,上相为固定相,下相为流动相,逆流色谱仪转速为800r/mm,流速为1.5ml/min。所得大豆昔、染料木昔经高效液相色谱分析测定,纯度分别达到98.2% 高速逆流色谱( H S
高速逆流色谱法的应用
1.天然产物 HSCCC可采用不同物化特性的溶剂体系和多样性的操作条件,具有较强的适应性,为从复杂的天然产物粗制品中提取不同特性(如不同极性)的有效成分提供了有利条件。因此在80年代后期,在世界范围内的"回归大自然"浪潮的席卷之下,HSCCC被大量用于天然产物化学成分的分析和制备分离,目前报道
大麻药中两个新异戊烯基黄酮的高速逆流色谱分离制备
摘 要 应用高速逆流色谱分离制备大麻药的化学成分,以石油醚∶乙酸乙酯∶乙醇∶水(1∶1. 2∶1. 2∶1, V /V )为两相溶剂系统,上相为固定相,下相为流动相,流速2. 0 mL /min,主机转速800 r/min,分离温度30℃,检测波长280 nm。以此分离条件经一步洗脱从400 mg大
高速逆流色谱法分离木香中的木香烃内酯和去氢木香内酯
摘要: 目的 应用高速逆流色谱法分离制备木香中的木香烃内酯和去氢木香内酯。方法 应用正己烷- 乙酸乙酯- 甲醇-水(2z 0. 5z 2z 1)为两相溶剂系统,主机转速为850 r·min- 1 ,流速为2. 0 ml·min- 1 ,检测波长为254 nm。结果 从100 mg木香粗提物中分离得到
高速逆流色谱分离纯化紫苏叶中迷迭香酸
摘要目的: 建立高速逆流色谱分离纯化紫苏叶中迷迭香酸的方法。方法: 采用高速逆流色谱分离纯化紫苏叶乙酸乙酯萃取部分中迷迭香酸,以石油醚- 乙酸乙酯- 甲醇- 0. 5%醋酸水溶液( 2∶ 5∶ 2∶ 5) 为溶剂体系,上相为固定相,下相为流动相,流速2. 0 mL·min - 1 ,主机转速800
高速逆流色谱分离纯化紫苏叶中迷迭香酸
摘要目的: 建立高速逆流色谱分离纯化紫苏叶中迷迭香酸的方法。方法: 采用高速逆流色谱分离纯化紫苏叶乙酸乙酯萃取部分中迷迭香酸,以石油醚- 乙酸乙酯- 甲醇- 0. 5%醋酸水溶液( 2∶ 5∶ 2∶ 5) 为溶剂体系,上相为固定相,下相为流动相,流速2. 0 mL·min - 1 ,主机转速800
高速逆流色谱分离纯化白芍中芍药苷的研究
摘 要:目的 建立了微波提取与高速逆流色谱纯化白芍中芍药苷的方法。方法 实验采用90 %乙醇、微波功率850 W的条件下对白芍提取25 min ,提取物在正丁醇-醋酸乙酯-水(2 ∶3 ∶5) 的溶剂体系下进行高速逆流色谱纯化,纯化物在高效液相色谱流动相甲醇2水(70 ∶30) ;色谱柱Shim2p
详述高速逆流色谱法的前景
近年来,溶剂体系的选择范围越来越宽泛,有人提出用超临界二氧化碳做流动相,利用它的高扩散性、低粘度、流体特性及环境友好等其他溶剂不可比拟的优势分离化合物,还有人提出用制冷剂做流动相的可能性。还有人提出将三相溶剂体系用于 高速逆流色谱分离中,可以对宽极性范围的样品进行很好的分离。目前三相溶剂还只用于