高速逆流色谱应用领域
高速逆流色谱应用领域( 1 )天然产物已知有效成分的分离纯化( 2 )化学合成物质的分离纯化( 3 )中药一类、五类新药的开发( 4 )中药指纹图谱和质量控制研究( 5 )抗生素的分离纯化( 6 )天然产物未知有效成分的分离纯化(新化合物开发)( 7 )海洋生物活性成分的分离纯化( 8 )放射性同位素分离( 9 )多肽和蛋白质等生物大分子分离以及手性分离等......阅读全文
高速逆流色谱应用领域
高速逆流色谱应用领域( 1 )天然产物已知有效成分的分离纯化( 2 )化学合成物质的分离纯化( 3 )中药一类、五类新药的开发( 4 )中药指纹图谱和质量控制研究( 5 )抗生素的分离纯化( 6 )天然产物未知有效成分的分离纯化(新化合物开发)( 7 )海洋生物活性成分的分离纯化( 8 )放射性同位
高速逆流色谱的应用领域
( 1 )天然产物已知有效成分的分离纯化 ( 2 )化学合成物质的分离纯化 ( 3 )中药一类、五类新药的开发 ( 4 )中药指纹图谱和质量控制研究 ( 5 )抗生素的分离纯化 ( 6 )天然产物未知有效成分的分离纯化(新化合物开发) ( 7 )海洋生物活性成分的分离纯化 ( 8
高速逆流色谱的应用领域及构造
应用领域 ( 1 )天然产物已知有效成分的分离纯化 ( 2 )化学合成物质的分离纯化 ( 3 )中药一类、五类新药的开发 ( 4 )中药指纹图谱和质量控制研究 ( 5 )抗生素的分离纯化 ( 6 )天然产物未知有效成分的分离纯化(新化合物开发) ( 7 )海洋生物活性成分的分离纯化
关于高速逆流色谱的应用领域介绍
(1)天然产物已知有效成分的分离纯化 (2)化学合成物质的分离纯化 (3)中药一类、五类新药的开发 (4)中药指纹图谱和质量控制研究 (5)抗生素的分离纯化 (6)天然产物未知有效成分的分离纯化(新化合物开发) (7)海洋生物活性成分的分离纯化 (8)放射性同位素分离 (9)多肽
高速逆流色谱
高速逆流色谱(High-speed Countercurrent Chromatography,简称HSCCC)是由美国国家医学院Yiochiro Ito博士于1982年首先开始的。到目前为止,此项技术已用于生物化学、生物工程、医学、药学、天然产物化学、有机合成、化工、环境、农业、 食品、材
关于高速逆流色谱的高速逆流色谱的概述
高速逆流色谱仪(High-speed Countercurrent Chromatography,简称HSCCC),于1982年由美国国立卫生院Ito博士研制开发的一种新型的、连续高效的液液分配色谱技术。 高速逆流色谱 ( high-speed countercurrent chromatog
简述高速逆流色谱仪的应用领域
应用领域 (1)天然产物已知有效成分的分离纯化 (2)化学合成物质的分离纯化 (3)中药一类、五类新药的开发 (4)中药指纹图谱和质量控制研究 (5)抗生素的分离纯化 (6)天然产物未知有效成分的分离纯化(新化合物开发) (7)海洋生物活性成分的分离纯化 (8)放射性同位素分离
高速逆流色谱原理
1. 逆流色谱是20世纪50年代源于多极萃取技术(非连续性)多极萃取技术但是多极萃取设备庞大复杂、易碎、溶剂体系容易乳化,溶剂耗量大,分离时间长。2. 通过公转、自转(同步行星式运动)产生的二维力场,保留两相中的其中一相作为固定相高速逆流色谱原理2.通过高速旋转提高两相溶剂的萃取频率,1000rpm
高速逆流色谱构造
高速逆流色谱构造:仪器的中心部分:(a) ITO多层线圈分离柱,它是由100-200米长、内径为1.6mm左右的聚四氟乙烯管沿具有适当内径的内轴共绕十多层而成,其管内总体积可达300mL左右。(b)平衡器,它可以调节重量,它的作用是让(a), (b)相对于中心轴两边重量平衡。当在旋转控制器的控制下,
高速逆流色谱的发展史及应用领域
发展史 1.20世纪70年代,出现了液滴逆流色谱(DCCC) 特点: (1)流体静力学原理(Hydrostatic equilibrium system,HSES) (2)分离时间过长、连接处容易出现渗漏等 2.20世纪70年代出现了离心分配色谱仪(Centrifugal partit
高速逆流色谱的特点
应用范围广,适应性好 由于溶剂系统的组成及配比可以是无限多的,因而从理论上讲可以适用于任何极性范围内样品的分离,在分离天然化合物方面具有其独到之处。由于聚四氟乙烯管中的固定相为液体不需要固相载体,因而可以消除固-液色谱中由于使用固相载体而带来的吸附损失,特别适用于分离极性物质。 操作简便,容
高速逆流色谱经验分享
高速逆流色谱属于逆流色谱的范畴,逆流色谱是新型的分离手段,它的主要分离原理是利用样品在固定相和流动相之间的差异也就是分配比不同而进行分离的,值得注意的是逆流色谱的固定相和流动相都是液体,其主要优点是没有传统色谱的死吸附,样品的回收率高等特点。逆流色谱源于逆流分溶法,也就是用实验室经常使用的分液漏斗进
高速逆流色谱的构造
仪器的中心部分:(a) ITO多层线圈分离柱,它是由100-200米长、内径为1.6mm左右的聚四氟乙烯管沿具有适当内径的内轴共绕十多层而成,其管内总体积可达300mL左右。(b)平衡器,它可以调节重量,它的作用是让(a), (b)相对于中心轴两边重量平衡。当在旋转控制器的控制下,在齿轮传动装置
高速逆流色谱经验分享
高速逆流色谱属于逆流色谱的范畴,逆流色谱是新型的分离手段,它的主要分离原理是利用样品在固定相和流动相之间的差异也就是分配比不同而进行分离的,值得注意的是逆流色谱的固定相和流动相都是液体,其主要优点是没有传统色谱的死吸附,样品的回收率高等特点。 逆流色谱源于逆流分溶法,也就是用实验室经常使用的分液漏斗
高速逆流色谱的特点
高速逆流色谱的特点应用范围广,适应性好由于溶剂系统的组成及配比可以是无限多的,因而从理论上讲可以适用于任何极性范围内样品的分离,在分离天然化合物方面具有其独到之处。由于聚四氟乙烯管中的固定相为液体不需要固相载体,因而可以消除固-液色谱中由于使用固相载体而带来的吸附损失,特别适用于分离极性物质。操作简
高速逆流色谱研究发展
高速逆流色谱研究发展:溶剂体系的选择范围越来越宽泛,有人提出用超临界二氧化碳做流动相,利用它的高扩散性、低粘度、流体特性及环境友好等其他溶剂不可比拟的优势分离化合物,还有人提出用制冷剂做流动相的可能性。还有人提出将三相溶剂体系用于高速逆流色谱分离中,可以对宽极性范围的样品进行很好的分离。三相溶剂还只
高速逆流色谱技术(HSCCC)
高速逆流色谱技术(high-speed countercurrent chromatography,简称HSCCC) 是20世纪80年代由美国Y.Ito博士发明的一种新的逆流色谱技术。它是基于液-液分配原理,利用螺旋管的方向性与高速行量式运动相结合,产生一种独特的动力学现象,使两相溶剂在螺旋管中
高速逆流色谱操作步骤
高速逆流色谱是20世纪80年代发展起来的一种连续的液—液分配色谱分离技术,它不用任何固态的支撑物或载体。仪器利用两相溶剂体系在高速旋转的螺旋管内建立起一种特殊的单向性流体动力学平衡,当其中一相作为固定相,另一相作为流动相,在连续洗脱的过程中能保留大量固定相。 今天小编就带大家了解一下高速
高速逆流色谱技术简介
高速逆流色谱仪(High-speed Countercurrent Chromatography,简称HSCCC),于1982年由美国国立卫生院Ito博士研制开发的一种新型的、连续高效的液液分配色谱技术。高速逆流色谱(high speed countercurrentchromatography,简
高速逆流色谱技术简述
高速逆流色谱技术简述高速逆流色谱仪(High-speed Countercurrent Chromatography,简称HSCCC),于1982年由美国国立卫生院Ito博士研制开发的一种新型的、连续高效的液液分配色谱技术。高速逆流色谱 ( high-speed countercurrent chr
高速逆流色谱技术简述
高速逆流色谱仪(High-speed Countercurrent Chromatography,简称HSCCC),于1982年由美国国立卫生院Ito博士研制开发的一种新型的、连续高效的液液分配色谱技术。高速逆流色谱 ( high-speed countercurrent chromatograph
高速逆流色谱的影响因素
1.固定相的保留值 在逆流色谱中,留在管中固定相的量是影响溶质峰分离度的一个重要因素,高保留量将会大大改进峰分离度。 仪器对保留值的影响(外因) 研究表明:螺旋管支持件的自转半径r与公转半径R之比B值是一个影响两相互不混溶溶剂在旋转螺旋管内保留的关键因素。用大直径的支持件使值进一步提高,能导
高速逆流色谱的发展历程
高速逆流色谱是在1982年,美国国立卫生院的一个教授首先研究和发展起来的一种不同于传统液相色谱法的现代色谱分离制备技术。作为一种新的色谱技术,HSCCC分离系统可以理解为以螺旋管式离心分离仪代替HPLC的柱色谱系统。HSCCC不使用固相载体作固定相, 克服了固相载体带来的样品吸附、损失、污染和峰
高速逆流色谱的发展历史
1.20世纪70年代,出现了液滴逆流色谱(DCCC) 特点: (1)流体静力学原理(Hydrostatic equilibrium system,HSES) (2)分离时间过长、连接处容易出现渗漏等 2.20世纪70年代出现了离心分配色谱仪(Centrifugal partition c
高速逆流色谱应用研究
摘 要 本文介绍了高速逆流色谱技术的工作原理、特点,综述了近年来高速逆流色谱(HSCCC)在分离制备天然产物、蛋白质、抗生素、无机物等领域的进展,尤其是近几年在中药尤其是植物药有效成分分离纯化方面的应用情况,总结了适用于HSCCC的溶剂体系,并展望了HSCCC与质谱、蒸发光散射联用等新技术的应用前景
高速逆流色谱的原理概述
高速逆流色谱的原理概述 HSCCC利用一种特殊的流体动力学(单向流体动力学平衡)现象。具体表现为一根100多米长的螺旋空管,注入互不相溶的两相溶剂中的一相作为固定相,然后作行星运动;同时不断注入另一相(流动相),由于行星运动产生的离心力场使得固定相保留在螺旋管内,流动相则不断穿透固定相;这
高速逆流色谱的技术原理
HPCPCTM是一个新的液相色谱技术,利用液液两相的逆流分配,在没有固体填料的情况下,执行复杂的化学物质的混合物分离。它以液体溶剂替代了传统的制备型高效液相色谱填充柱为固定相和另一液体溶剂做流动相在一个高性能的离心系统分区进行操作。不需使用固态固定相,而是利用离心力产生的恒定力场将固定相保留在由
高速逆流色谱的研究热点
近年来,溶剂体系的选择范围越来越宽泛,有人提出用超临界二氧化碳做流动相,利用它的高扩散性、低粘度、流体特性及环境友好等其他溶剂不可比拟的优势分离化合物,还有人提出用制冷剂做流动相的可能性。还有人提出将三相溶剂体系用于高速逆流色谱分离中,可以对宽极性范围的样品进行很好的分离。目前三相溶剂还只用于标
高速逆流色谱的系统结构
图A,调整逆流色谱基本系统结构 高速逆流色谱技术的基本系统结构如上图A所示,主要由输液泵、进样阀、螺旋管式离心分离管、检测器等组成。由于其操作压力并不高,用普通的中低压泵即可。进样可用带有样品环管的六通进样阀进样。样品的分离是在多层螺旋管式离心分离管内完成。检测器与液相色谱的检测器相同,如紫外检测
高速逆流色谱的应用前景
近年来, 分析型高速逆流色谱的柱系统越来越向微型化发展, 如螺旋管柱体积可小到3—5mL, 柱内径小到0.3—0.4mm, 并可以通过各种接口技术与多种检测器和化合物结构分析技术相结合。尤其是高速逆流色谱与MS的联用,把高速逆流色谱分离的灵活性、多样性与MS的高灵敏度检测和结构分析特性良好地结合在一