北大冷冻电镜技术接连发表Nature,NatureCommunications文章
蛋白酶体是细胞中用来调控特定蛋白质的浓度和清除错误折叠蛋白质的主要机制的核心组成部分,是细胞中最普遍的不可或缺的大型全酶超分子复合机器之一,也是迄今为止发现的最大的蛋白降解机器。 北京大学物理学院/定量生物学中心毛有东课题组致力于新兴冷冻电镜技术方法的发展,将之用于结构生物学、生物物理、化学生物学、药物设计等重要学科领域的前沿研究。近期这一课题组接连在Nature,Nature Communications杂志上发表文章,揭示了人源蛋白酶体26S的三维动态结构和作用机制。 人源蛋白酶体全酶包含至少64个亚基,由盖子 (Lid)和基座(Base)亚复合体组成的调控颗粒RP(Regulatory Particle)所激活。2016年,这一课题组与其合作者在PNAS报道了人源蛋白酶体的基态近原子分辨的冷冻电镜结构,以及三个亚纳米分辨的RP-CP亚复合体亚稳或过渡态的共存结构,并首次发现其中一个亚稳态构象的CP的底物转运通道处于......阅读全文
冷冻电镜三维重构
摘要:冷冻电子显微学从创立到现在已发展成为确定蛋白质分子,蛋白质复合物和细胞器结构的一种有效、的方法这表现在三位冷冻电镜技术的不同方面。这主要包括适合于显微镜真空环境的样品制备条件,减少辐射损伤的策略,提高未经染色的电子显微像的信躁比的方法和二位投影三位重构的不同方法。冷冻电镜通过高压快速液氮冷冻的
冷冻蚀刻电镜技术操作方法
操作方法冷冻蚀刻的操作方法按以下步骤进行。1.预处理取新鲜组织块,大小为15~3~5mm,用25%戊二醛固定1~3小时。为防止冰晶形成,用30%甘油生理盐水浸泡8~12小时。2.冷冻断裂是在冷冻条件下使样品变得又硬又脆,用刀劈裂样品,暴露观察面。因为是用刀劈裂的样品,断裂往往发生在细胞被冻结后较
冷冻电镜使用费用
冷冻电镜大数据收集使用费校内(元/24小时)4000 耗材自理 。基于结构的药物发现(Structure-based drug discovery, SBDD)是设计和优化创新药的必要方法。本篇综述将深入探讨冷冻电镜(cryo-EM)在SBDD领域中的快速崛起及它的主要作用,以及阐释它如何为高价值药
冷冻蚀刻电镜技术的内容介绍
冷冻蚀刻(Freezeetching)技术是从50年代开始发展起来的一种将断裂和复型相结合的制备透射电镜样品技术,故而亦称冷冻断裂(Freezefracture)或冷冻复型(Freezereplica)。
冷冻蚀刻电镜技术的应用介绍
1.冷冻蚀刻表面标记免疫电镜技术(1)新鲜或固定的细胞进行直接法或间接法免疫标记。(2)PBS(pH7.5)冲洗3min×2,加入1mmol/l MgCl2蒸馏水洗洗3min×3,离心沉集细胞。(3)将细胞团置于小纸板上,入液氮冷却的Freon中,取出入冷冻蚀刻仪中进行断裂操作,再于-100℃蚀刻1
冷冻电镜模型重构和优化
模型重构和优化模型三维重构的基础是中心截面定理,重构过程中的关键问题是如何确定每个颗粒图像的空间角(orientation determination)。大多数模型重构和优化算法都是基于投影匹配(projection matching)的迭代方法。简单说就是,先利用粗糙的三维结构模型,进行投影得到参
冷冻电镜的原理及应用
冷冻电镜全称冷冻电子显微镜(Cryoelectron Microscopy),简单理解为用电子显微镜去观察冷冻固定的样本,得出清晰三维结构。可实现直接观察液体、半液体及对电子束敏感的样品,如生物、高分子材料等。样品经过超低温冷冻、断裂、镀膜制样(喷金/喷碳)等处理后,通过冷冻传输系统放入电镜内的冷台
冷冻电镜三维重构
三维重构做过TEM的小伙伴都知道,透射电镜得到的是二维投影图像,要得到三维的结构,就要通过一系列建模、变换,这个过程就是三维重构。上面提到的第3位诺奖得主Joachim Frank就是和他的合作者建立了非对称颗粒从二维投影到三维结构的方法(随机圆锥倾斜法),奠定了冷冻电镜单颗粒三维重构的基本原理,如
蛋白质冷冻电镜投影图像有了三维重构新算法
从冷冻电镜的多个二维投影图像进行三维重构,获得蛋白质的三维结构。 兰州大学供图蛋白质结构解析是分子生物学的核心课题,对于人们认识蛋白质的功能,理解疾病的发病机理,进行药物设计和疾病治疗等都具有非常重要的意义。近年来,冷冻电镜技术在测定生物大分子结构方面取得了突破性的进展,虽然目前DeepMind 公
中国科学家7月参与发表多篇Nature文章
7月中国学者参与的多项研究在Nature杂志及其重要子刊上发表,其中包括SIRT7细胞功能新机制,26S蛋白酶体原子结构,以及iRhom2作为正调控因子的新功能。 首先北京大学医学部、天津医科大学的研究人员证明了组蛋白H3K122 succinylation被Sirt7去修饰,是响应DNA损伤
冷冻电镜研究生物学
结构生物学是诞生于上个世纪中叶通过研究生物大分子的结构与运动来阐明生命现象的学科。在过去半个世纪里,X射线法解析生物大分子结构一直占据结构生物学的统治地位。而近年来,冷冻电镜在研究生物大分子结构尤其是超分子体系的结构方面取得了突飞猛进的发展。该技术它可以快速、简易、高效、高分辨率解析高度复杂的超大生
冷冻电镜解析激动剂原理
冷冻电镜技术、特殊荧光特性。1、冷冻电镜技术可以直接凝固生物大分子的溶液,而无需使用油墨或薄片。因此,冷冻电镜需要非常强的辐射或标记来解析样品。2、激动剂是一种具有特殊荧光特性的化学物质,可以非常灵敏地捕获生物大分子的结构变化,例如蛋白质复合物的构象转变,以及药物与大分子的相互作用。
冷冻电镜二维图像分析
二维图像分析——颗粒图像的匹配与分类二维颗粒图像的分类是获取三维结构过程的第一步。对二维图像的分析包括两部分:颗粒图像的匹配和颗粒图像的分类。匹配的过程通常会对颗粒图像应用一些变换操作,通过关联函数去判断不同颗粒图像之间的相似程度。图像匹配的算法主要分为两种,即不依赖模型的方法和基于模型的方法,取决
冷冻电镜最大似然估计理论
最大似然估计理论近年来在单颗粒分析中取得重大突破的应当是最大似然估计(maximum likelihood)理论。最大似然估计的理论可以贯彻整个单颗粒技术图像分析的过程,在图像匹配,2D、3D分类 和模型优化上均可以应用,是一个强有力的理论工具。最大似然估计的算法已经在RELION、FREALIG
亚洲首台KRIOS冷冻电镜落户清华
日前,亚洲首台KRIOS冷冻电镜在清华大学安装落成,同时启动了清华大学生命科学与医学研究院(医研院)和荷兰FEI公司的全面合作,双方负责人分别在合作仪式上签字。 根据合作协议,FEI公司无偿为清华大学医研院提供一台价值约140万美元的Tecnai TF20冷冻透射电镜一年的使用权限,用
冷冻蚀刻表面标记免疫电镜技术介绍
(1)新鲜或固定的细胞进行直接法或间接法免疫标记。(2)PBS(pH7.5)冲洗3min×2,加入1mmol/l MgCl2蒸馏水洗洗3min×3,离心沉集细胞。(3)将细胞团置于小纸板上,入液氮冷却的Freon中,取出入冷冻蚀刻仪中进行断裂操作,再于-100℃蚀刻1min 。(4)制做断裂面复型。
冷冻电镜三维重构原理
冷冻电镜三维重构原理电镜三维重构的思想早在1968年就由D.De Rosier和A.Klug提出,而冷冻电镜技术则是在1974年首次由Taylor K,和Glaeser RM创建。三维冷冻电镜技术主要是将样品保存在液氮或液氦温度下利用透射电子显微镜进行二维成像,再经过对二维投影图像的分析进行三维重构
冷冻电镜的成像方式和原理
成像方式电子束穿过样品时会携带有样品的信息,TEM的成像设备使用这些信息来成像。投射透镜将处于正确位置的电子波分布投射在观察系统上。观察到的图像强度,I,在假定成像设备质量很高的情况下,近似的与电子波函数的时间平均幅度成正比。若将从样品射出的电子波函数表示为Ψ,则不同的成像方法试图通过修改样品射出的
冷冻电镜单粒子法及其应用
冷冻电镜单粒子法使我们在分子水平对生命过程有了新的认识。核糖体是一个由多种结构相互作用形成的RNA蛋白质复合体,他的结构解析是对这种技术应用的最好说明。从7 0年代Frank开始对核糖体进行单颗粒分析以来 ,二十多年的努力使得大肠杆菌70S核糖体1.5nm分辨率的三维结构已经得到揭示。从这个三维结构
冷冻电镜电子晶体学
电子晶体学X-ray晶体学与生物电镜的结合形成电子晶体学,综合了三维密度图和傅立叶变换数学理论,这可追述到D.De Rosier和A.Klug对T4噬菌体尾部的螺旋结构的研究工作上[2]。通过获得已制好的结构规则的二维晶体的高分辨率电子密度图,我们可以解析出它的原子水平结构,螺旋对称样品或二十面体对
研究揭示冷冻电镜辐照损伤效应
中国科学院生物物理研究所孙飞研究组联合中国科学院物理研究所李建奇研究组,首次系统研究了类生物有机样品在不同成像模式、温度、电子剂量率、波包电子数和脉冲重复率下的电子辐照损伤效应,明确了脉冲式电子成像模式对有机样品的电子辐照损伤与连续式电子成像模式相同,揭示了电子束对样品辐照损伤背后的物理机制。相
电镜制样--高压冷冻技术手册(一)
电镜制样 - 高压冷冻技术手册
冷冻蚀刻电镜技术的操作方法
冷冻蚀刻的操作方法按以下步骤进行。1.预处理取新鲜组织块,大小为15~3~5mm,用25%戊二醛固定1~3小时。为防止冰晶形成,用30%甘油生理盐水浸泡8~12小时。2.冷冻断裂是在冷冻条件下使样品变得又硬又脆,用刀劈裂样品,暴露观察面。因为是用刀劈裂的样品,断裂往往发生在细胞被冻结后较脆弱的部
冷冻蚀刻电镜技术的优缺点介绍
优点①样品通过冷冻,可使其微细结构接近于活体状态;②样品经冷冻断裂蚀刻后,能够观察到不同劈裂面的微细结构,进而可研究细胞内的膜性结构及内含物结构;③冷冻蚀刻的样品,经铂、碳喷镀而制备的复型膜,具有很强的立体感且能耐受电子束轰击和长期保存。缺点冷冻也可造成样品的人为损伤;断裂面多产生在样品结构最脆弱的
神器——冷冻电镜“乱入”材料圈?
说起冷冻电镜,小编想不管是研究生还是教授大咖,可能和科研有那么一丁点联系的人对这个名字都不会陌生,因为它实在太出名了!基于冷冻电镜产出的科研成果很多都发表在Nature、Science、Cell等顶刊上(羡慕脸),堪称NSC神器。冷冻电镜技术的发展直接带动了生命科学领域,特别是结构生物学的飞速发
神器——冷冻电镜“乱入”材料圈?
说起冷冻电镜,小编想不管是研究生还是教授大咖,可能和科研有那么一丁点联系的人对这个名字都不会陌生,因为它实在太出名了!基于冷冻电镜产出的科研成果很多都发表在Nature、Science、Cell等顶刊上(羡慕脸),堪称NSC神器。冷冻电镜技术的发展直接带动了生命科学领域,特别是结构生物学的飞速发
冷冻电镜电子晶体学
电子晶体学利用电子显微镜对生物大分子在一维、二维以致三维空间形成的高度有序重复排列的结构(晶体)成像或者收集衍射图样,进而解析这些生物大分子的结构,这种方法称为电子晶体学。其适合的样品分子量范围为10~500kD,最高分辨率约1.9Å。该方法与X射线晶体学的类似之处在于均需获得高度均一的生物大分子的
冷冻电镜解决膜蛋白的结构
冷冻电子显微镜技术已经发展成为一个成熟的方法,应用于各种复杂的生物分子体系的高分辨结构研究。按照目前的发展势头,解决生物分子结构组(structural proteome)的问题已经不是遥不可及的了。在解决单一静态结构的基础上,冷冻电镜也展示了其研究多构象体系的潜力。下面对冷冻电镜在结构生物学研究领
清华施一公院士PNAS发布蛋白酶体研究新成果
来自清华大学、中国农业科学院、哈佛医学院的研究人员,采用单颗粒冷冻电子显微镜解析了酵母内源性26S蛋白酶体(proteasome)的结构,揭示出了两种主要的构象状态。这些研究成果发布在2月29日的《美国国家科学院院刊》(PNAS)上。 清华大学生命科学学院的施一公(Yigong Shi)教授与