研究揭示高比能锂/钠金属电池正极材料研究新进展

以金属锂/钠为负极的二次锂/钠金属电池,凭借负极极高的理论比容量和极低的反应电位拥有远超商业化锂离子电池的能量密度与功率密度,在电动汽车和基于绿色电网的大规模储能体系中有着广泛的应用前景。具有远超传统嵌入型正极能量密度的氟化物和硫化物转化反应正极,相比S8和O2分子型正极具有更高的振实密度以及更优的电化学稳定性,在无需过量导电添加剂辅助的情况下,即可实现活性物质的高载量和紧致的电极网络。因此,开发高倍率、长循环的氟基/硫基正极是实现更高比能二次碱金属电池商业化的潜在途径。在这些适配正极材料中,经济环保的Pyrite矿物相二硫化亚铁(FeS2)通过四电子的转换反应具有很高的理论比容量(894 mAh/g)。FeS2作为硫系正极,在醚类电解液中的稳定性远好于单质硫,其晶格中S-S键被Fe-S键“稀释”而潜在减少了循环过程中多硫化物的形成与溶解,因此,Li/Na-FeS2电池的循环稳定性更优异且不需额外的电解液添加剂(如LiNO3......阅读全文

研究揭示高比能锂/钠金属电池正极材料研究新进展

  以金属锂/钠为负极的二次锂/钠金属电池,凭借负极极高的理论比容量和极低的反应电位拥有远超商业化锂离子电池的能量密度与功率密度,在电动汽车和基于绿色电网的大规模储能体系中有着广泛的应用前景。具有远超传统嵌入型正极能量密度的氟化物和硫化物转化反应正极,相比S8和O2分子型正极具有更高的振实密度以及更

我所研制出3D打印高比能锂金属电池

  近日,我所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员、郑双好副研究员团队,设计了三维多孔导电亲锂的Ti3C2Tx MXene骨架用于高容量、无枝晶金属锂负极,匹配三维多孔导电、超高载量磷酸铁锂正极,研制出高能量密度、长寿命锂金属电池。  锂金属电池因金属锂负极具有

研究提出高比能锂金属电池增强催化和电解液新思路

  近日,西安交大材料学院宋江选教授团队在高比能二次电池关键材料研究中,针对锂金属电池界面稳定性差、锂枝晶生长严重以及体相离子传输缓慢等问题,分别提出了电荷分离COF中间层增强阴离子选择性催化界面的新策略和无氟类胶束电解液设计的新思路,相关研究成果分别以《通过电荷分离COF中间层增强阴离子选择性催化

研究提出高比能锂金属电池增强催化和电解液新思路

近日,西安交大材料学院宋江选教授团队在高比能二次电池关键材料研究中,针对锂金属电池界面稳定性差、锂枝晶生长严重以及体相离子传输缓慢等问题,分别提出了电荷分离COF中间层增强阴离子选择性催化界面的新策略和无氟类胶束电解液设计的新思路,相关研究成果分别以《通过电荷分离COF中间层增强阴离子选择性催化作用

科学家在高比能锂/钠金属电池正极材料研究中取得进展

  以金属锂/钠为负极的二次锂/钠金属电池,凭借负极极高的理论比容量和极低的反应电位拥有远超商业化锂离子电池的能量密度与功率密度,在电动汽车和基于绿色电网的大规模储能体系中有着广泛的应用前景。具有远超传统嵌入型正极能量密度的氟化物和硫化物转化反应正极,相比S8和O2分子型正极具有更高的振实密度以及更

西工大团队在氟化多孔框架实现高比能、低N/P比钠金属电池取得重要进展

  近日,西北工业大学材料学院纳米能源材料研究中心徐飞、王洪强课题组等通过分子设计合成氟化多孔框架材料(FCTF)作为有机界面层,可同时实现高亲钠性及可忽略的活性钠消耗,克服了传统无机界面层存在的亲钠性与钠利用率之间的博弈矛盾,实现了高钠利用率下钠金属电池的无枝晶、长循环。相关工作以“Fluorin

研究提出高比能二次电池仿生设计策略

近日,西安交通大学宋江选教授团队针对高比能电极材料硅负极在电化学过程中物质交换引发结构畸变,导致服役寿命与高比能之间呈现出反向制约关系,提出高比能二次电池仿生设计策略,构建了兼具“高强韧-快导锂”的仿贝壳结构硅电极,相关研究成果发表在《纳米快报》和《先进功能材料》上。该研究设计了仿神经网络功能粘合剂

化学所研制出新型高比能室温钠硫电池

  近年来,中国科学院化学研究所分子纳米结构与纳米技术院重点实验室的研究人员对硫属元素(S、Se)的电化学性能及其在锂二次电池方面的应用进行了系统研究。前期研究中,他们提出利用碳纳米孔道限域的链状小硫分子解决锂-硫电池中多硫离子溶出难题,研制出具有长循环寿命的锂-硫电池(J. Am. Chem.

宁波材料所在高比能锂金属负极保护方面取得系列进展

  锂金属作为锂二次电池的“圣杯”负极材料,具有3860毫安时/克的高比容量以及最低的氧化还原电位,既可以被应用于锂空气、锂硫等高能量密度体系中,也可以与锂离子正极材料配对实现二次电池能量密度的大幅度提升。然而,受制于锂金属沉积过程中的不规则枝晶生长以及锂金属与电解液的不可逆反应,锂金属负极在循环过

高比能锂电池热失控机理研究取得新进展

  在碳达峰和碳中和背景下,加速动力系统电动化成为新能源汽车发展的必然趋势。  随着能量密度的提升日益凸显,作为新能源汽车动力系统的关键技术,锂电池的安全隐患自燃、爆炸等电池热失控现象频频发生,热失控事故已成为制约锂离子电池进一步推广与规模化应用的瓶颈问题。提高电池安全性也成为新能源产业健康持久发展

双碳背景下的高比能锂电池研究进展

全固态Li-S软包电池热失控曲线及其触发机理示意图   固态能源系统技术中心供图在碳达峰和碳中和背景下,加速动力系统电动化成为新能源汽车发展的必然趋势。随着能量密度的提升日益凸显,作为新能源汽车动力系统的关键技术,锂电池的安全隐患自燃、爆炸等电池热失控现象频频发生,热失控事故已成为制约锂离子电池进一

研究人员提出高比能二次电池仿生设计策略

西安交通大学宋江选教授团队针对高比能电极材料硅负极在电化学过程中物质交换引发结构畸变,导致服役寿命与高比能之间呈现出反向制约关系,提出高比能二次电池仿生设计策略,近日该研究成果发表在《纳米快报》和《先进功能材料》上。研究构建了兼具“高强韧-快导锂”的仿贝壳结构硅电极,设计了仿神经网络功能粘合剂,解决

化学所等在新型高比能锂硫电池研究方面取得突破

  在国家自然科学基金委、科技部和中国科学院等支持下,中科院化学所分子纳米结构与纳米技术院重点实验室的研究人员,在解决高比能锂-硫电池中多硫离子的溶出问题,提高锂-硫电池循环寿命方面取得重要突破。研究结果发表在近期J. Am. Chem. Soc.(2012, 134, 18510−

高比能电解质的性能介绍

高比能电解质:追求高比能是目前锂离子电池的最大研究方向,特别是当移动设备在人们的生活中占有越来越大的比例时,电池寿命已成为电池最关键的性能。

青岛能源所高比能硫化物全固态锂硫电池研究获进展

全固态电池因具有安全性高、稳定性好、能量密度高等优点,开创性的解决了传统有机电解液电池中存在的寿命短、易燃、易爆等问题,成为一项突破技术。单质硫作为锂硫电池的正极材料,其理论比容量达到1675 mAh/g,高于商业上广泛应用的钴酸锂和三元正极材料。因此,将固态电解质引入到锂硫电池体系中构建全固态锂硫

“高比功率质子交换膜燃料电池金属板电堆技术”通过鉴定

  近日,中国科学院大连化学物理研究所研究员邵志刚团队研发的具有自主知识产权的“高比功率质子交换膜燃料电池金属板电堆技术”通过了中国石油和化学工业联合会组织的科技成果评价。评价委员会专家一致认为,该成果创新性强,处于国际先进水平,其中电堆体积比功率和低温环境适应性处于国际领先水平,同意通过鉴定。  

为何高比能量锂电池寿命衰减更快

从微观看,锂电池在使用的过程中,内部会发生电解液分解、活性材料失活、正负极结构坍塌导致锂离子嵌入和脱嵌的数量减少等不可逆的电化学反应并导致容量下降。尤其在高电压和高温条件下,高度脱锂的正极表面极易与电解液发生反应,比如,充电状态下的NCM811与电解液反应的活性,远大于NCM111与电解液反应的活性

我国研制出高比能、长寿命的固态钠电池-衰减率仅为0.007%

  近日,中国科学院大连化学物理研究所二维材料与能源器件研究组研究员吴忠帅团队与中国科学技术大学教授余彦团队、中科院宁波材料技术与工程研究所研究员姚霞银团队合作,构筑了聚合物固态电解质和正极材料的一体化集成系统,有效降低了固固界面阻抗,显著提高了电子、离子和电荷的传输效率,研制出高比能、柔性的全固态

贴片电阻比金属膜电阻精度高吗

电阻的精度高,其成本也就相对的加大. 要看在什么样的场合,精密的仪器为了提高它的精确度,可以选用精度高的电阻元件.而普通电路本身的成本就需要控制,精度较低的电阻完全可以胜任,就没必要去选昂贵的元件,徒劳的增加成本--显然很划不来.还有就是贴片电阻就我们所用的传统的金属膜电阻而言只是采用的封装形式不一

Cuberg下一代锂金属电池展示了更长的循环寿命与高比能量

电池公司Cuberg宣布移动电源解决方案公司(Mobile Power Solutions)对其锂金属软包电池的独立测试结果。据Cuberg公司介绍:“通过电池技术的持续发展,Cuberg电池的循环寿命提高了近一倍,同时能源和功率也得到了改善。”该公司表示:“Cuberg的第一代电池技术在2020年

高比能量动力电池取得阶段性进展

  在国家重点研发计划“新能源汽车”重点专项的支持下,由合肥国轩高科动力能源有限公司牵头承担的项目“高比能量动力锂离子电池的研发与集成应用”取得了阶段性进展,开发完成能量密度达281Wh/kg和302Wh/kg的电池单体样品。   项目团队围绕高比能、高安全、长寿命动力电池的开发,通过电池模型模拟分

锂电池的最大特点比能量高的介绍

  锂电池的最大特点是比能量高。什么是比能量呢?比能量指的是单位重量或单位体积的能量。比能量用Wh/kg或Wh/L来表示。Wh是能量的单位,W是瓦、h是小时;kg是千克(重量单位),L是升(体积单位)。这里举一个例来说明:5号镍镉电池的额定电压为12V,其容量为800mAh,则其能量为096Wh

“高比功率质子交换膜燃料电池金属板电堆技术”通过科技成果评价

近日,中国科学院大连化学物理研究所研究员邵志刚团队研发的具有自主知识产权的“高比功率质子交换膜燃料电池金属板电堆技术”,通过了中国石油和化学工业联合会组织的科技成果评价。评价委员会专家一致认为:该成果创新性强,处于国际先进水平,其中,电堆体积比功率和低温环境适应性处于国际领先水平,同意通过鉴定。“高

MXene基高比能超级电容器研究获进展

  近日,中国科学院大连化学物理研究所二维材料与能源器件研究组研究员吴忠帅与中科院金属研究所研究员王晓辉团队合作,采用二维金属碳化物MXene为负极,碳纳米管为正极,具有氧化还原活性的对苯二酚为正极电解液添加剂,构建了氢离子“摇椅”式高比能超级电容器,相关成果发表在《美国化学会-纳米》(ACS Na

高比能量锂硫电池自主研制成功

  日前,由中国科学院大连化学物理研究所开发的具有自主知识产权的“高比能量、大容量锂硫二次电池及电池组”在北京通过了由中国轻工业联合会组织的科技成果鉴定。鉴定意见为:项目技术总体达到国际先进水平,其中能量密度达到国际领先水平。  比能量是单位重量或单位体积电池所能放出的能量,是电池的重要性能指标。锂

高比能量锂硫二次电池研究获重要进展

2-15Ah锂硫电池系(08-21-16-48-49)15Ah锂硫电池充电(08-21-16-48-49)  8月22日,中科院大连化物所陈剑研究员带领先进二次电池研究团队,在高比能量锂二次电池方面取得重要进展,研制成功额定容量15 Ah的锂硫电池,并形成小批量制备能力。  据了

研究人员将发明新电池-蓄电能力比锂电池高10倍

  我们的手机和笔记本电脑用的都是锂离子电池。而现在,一种锂空气电池已成为科学家眼中的“未来电池”。   记者昨日获悉,武汉理工大学―哈佛大学纳米联合重点实验室的武汉科学家,正在为这款电池出世“加足电力”。他们的研究引起全球制成首个锂电池的威庭汉教授的关注和积极评价,其最新成果本月1

研究人员将发明新电池蓄电能力比锂电池高10倍

  我们的手机和笔记本电脑用的都是锂离子电池。而现在,一种锂空气电池已成为科学家眼中的“未来电池”。   记者昨日获悉,武汉理工大学—哈佛大学纳米联合重点实验室的武汉科学家,正在为这款电池出世“加足电力”。他们的研究引起全球制成首个锂电池的威庭汉教授的关注和积极评价,其最新成果本月12日在国际著名

高比能量动力锂离子电池高镍正极材料研发获阶段性进展

  国家重点研发计划“新能源汽车”重点专项2016年度立项项目“高比能量动力锂离子电池开发与产业化技术攻关”在高镍正极材料研发方面取得突破性进展。  项目研发团队在第一阶段通过基础配方实验,解决了高镍系材料放电比容量低、首效低的技术难题,结合前驱体控制结晶合成技术、富氧气氛二次固相合成技术和配方调整

“量子电池”比传统电池充电更快

  最近,来自英国、意大利等四国的物理学家在英国物理学会(IOP)刊物《新物理学》杂志上发表论文,提出了“量子电池”的概念,并理论证明了多量子比特相互纠缠而产生的“量子加速”能为充电提供捷径,所以用量子电池充电比传统电池更快。   量子电池可以有多种物理形式,如离子、中性原子、光子等。量子比特能同时