Antpedia LOGO WIKI资讯

Cell头条:内源RNAi信号

来自加拿大麦吉尔大学的Mathieu Flamand 和Thomas F. Duchaine在7月20日《细胞》(Cell)杂志上发表了一篇题为“SnapShot: Endogenous RNAi Pathways”的文章。文章以概略图加上主题内容简介并推荐了10篇文献,简明扼要地概述了当前对于内源RNAi信号的认识,为广大研究人员提供了重要的资料。 1998年Andrew Z Fire和马萨诸塞大学癌症中心的Craig Mello 首次将双链dsRNA 注入线虫,结果诱发了比正义链和反义链的单独注射都要强的基因沉默。他们将这种由dsRNA引发的特定基因表达受抑制现象称为RNA干扰作用(RNAi)。在随后的短短一年中,RNAi现象被广泛地发现于真菌、拟南芥、水螅、涡虫、锥虫、斑马鱼等大多数真核生物中,对于动植物抵抗外源病毒、生长发育调控方面起着重要的作用,至此掀起了广泛开展RNAi研究的热潮。 RNA......阅读全文

真核细胞表达系统的类型与常用真核细胞表达载体

原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。自上世纪70年代基因工程 技术诞生以来,基因表达技术已渗透到生命科学研究的各个领域。并随着人类基因组计划实施的进行,在技术方法上得到了很大发展,时至今

基因技术专题-1

专题一:RNA干扰技术(RNAi)1995年,康奈尔大学的Su Guo博士用反义RNA阻断线虫基因表达的试验中发现,反义和正义RNA都阻断了基因的表达,他们对这个结果百思不得其解。直到1998年, Andrew Fire的研究证明,在正义RNA也阻断了基因表达的试验中,真正起作用的是双链RNA。这些

利用实时定量PCR和2-△△CT法分析基因相对表达量

利用实时定量PCR和2-△△CT法分析基因相对表达量  METHODS 25, 402–408 (2001)Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-△△CT M

实时定量PCR应用中的优化方案(二)

实践中的问题实时定量PCR已广泛地运用于分子生物学的各个领域,就目前的应用情况来看,虽然取得了很好的效果,但是其在方法学上的选择、敏感性问题、重复性问题等都一直是争论不休的,本文将就这些问题做出探讨。1. 方法的选择:研究者在实验中往往想要得到目的基因的绝对量,因为绝对定量对目的基因的表达差异有直接

荧光定量PCR标准曲线有几个梯度

  相对定量  相对定量得到的结果为特定样本中目的基因相对于另一参照样本的量的变化。  在某些不需要对基因进行绝对定量,只需要确定基因相对表达差异的情况下,如某样品在经过某种处理后目的基因表达量是增加了还是减少了,用相对定量的方法就可以得到结果,相对定量是一种更普遍、更简单的方法。  内参基因  实

PCR Array 简单实用的检测基因表达的高通量方法

 简介:什么是PCR芯片?实时定量PCR是检测基因表达zui灵敏,zui可靠的方法。通过在试验过程中,实时监测荧光染料的信号变化,反映样品中的基因拷贝数。实时定量PCR线性范围广(能达到5个数量级),因此可以检测同一样品中表达量极低的基因和表达量很高的基因。但是,由于实时定量PCR需要制备

常用的分子生物学基本技术

核酸分子杂交技术由于核酸分子杂交的高度特异性及检测方法的灵敏性,它已成为分子生物学中最常用的基本技术,被广泛应用于基因克隆的筛选,酶切图谱的制作,基因序列的定量和定性分析及基因突变的检测等。其基本原理是具有一定同源性的原条核酸单链在一定的条件下(适宜的温室度及离子强度等)可按碱基互补原成双链。杂交的

基因差异表达技术

真核生物中,从个体的生长、发育、衰老、死亡,到组织的得化、调亡以及细胞对各种生物、理化因子的应答,本质上都涉及基因的选择性表达。高等生物大约有30000个不同的基因,但在生物体内任意8细胞中只有10%的基因的以表达,而这些基因的表达按特定的时间和空间顺序有序地进行着,这种表达的方式即为基因的差异表达

定 量 PCR 技 术 简 介

聚合酶链反应(polymerase chain reaction, PCR)是微量核酸扩增的有效工具,由于其灵敏、特异、快速等优点,在医学上已广泛应用与病毒、细菌病原体及遗传病、肿瘤的早期诊断。随着PCR技术的发展,特别是病毒或肿瘤的治疗监测、疾病的诊断、机体基因表达调控方面,不仅需要检测其存在是否

确定生物芯片实验研究目标

目前生物芯片尤其是基因芯片已广泛用于医学研究之中,已有很多商业化生产的生物芯片产品销售,研究者直接可以选择成型的产品使用,不需要自己制备芯片,因此如何正确使用芯片解决研究中的生物学问题是研究者更关注的。     基因芯片设计是最重要的部分,它关系到最终结果能否

生物标志物研究与早期药物研发基因表达分析功...(三)

靶基因表达标准化参考基因选择对于相关定量分析来说,通过参考基因表达进行靶基因表达标准化。理想情况下,标准化处理应该能够补偿 RNA/cDNA起始量变异情况,以及cDNA合成或 PCR 扩增中潜在抑制剂的作用。参考基因作为内源性样本材料对照,工作流中,与靶基因一同被处理。为获取可靠结果,标准化

实质等同性(转录组学)实验

实验材料:小麦  试剂、试剂盒:β-巯基乙醇                                   &nb

通过2 -△△CT 方法,利用实时定量PCR技术分析相对基...(二)

要使△△ C T 计算方法有效,目标序列和内参序列的扩增效率必须相等。看两个反应是否具有相同的扩增效率的方法是看他们模板浓度梯度稀释後扩增产物△ C T 如何变化。图 1 显示的是 cDNA 样品在 100 倍稀释范围内的实验结果。对于每一个稀释样本,都用 GAPDH 和 c-myc 特异的荧光

RNAi——双链RNA引起的基因敲除(1)

1995年,康奈尔大学的Su Guo博士用反义RNA阻断线虫基因表达的试验中发现,反义和正义RNA都阻断了基因的表达,他们对这个结果百思不得其解。直到1998年, Andrew Fire的研究证明,在正义RNA也阻断了基因表达的试验中,真正起作用的是双链RNA[1]。这些双链RNA是体外

国自然研究热点—eccDNA的前世今生

  ​1. eccDNA为什么火?它到底是何方神圣?   2019年11月,顶尖国际学术期刊《Nature》和《Cell》相继发表了关于染色体外环状DNA(extrachromosomal circular DNA,eccDNA)的重要研究,彻底颠覆了人们对癌基因的传统认知,同时也迅速引爆了整个生

国自然研究热点—eccDNA的前世今生

  2019年11月,顶尖国际学术期刊《Nature》和《Cell》相继发表了关于染色体外环状DNA(extrachromosomal circular DNA,eccDNA)的重要研究,彻底颠覆了人们对癌基因的传统认知,同时也迅速引爆了整个生物医学界,一时之间,将人们的目光都吸引到这个科研界的新宠

简并寡核苷酸基因混编实验

简并寡核苷酸基因混编             实验材料 pBSII KS 质粒

真核细胞表达系统-1

自上世纪70年代基因工程技术诞生以来,基因表达技术已渗透到生命科学研究的各个领域。并随着人类基因组计划实施的进行,在技术方法上得到了很大发展,时至今日已取得令人瞩目的成就 。随着人类基因组计划的完成,越来越多的基因被发现,其中多数基因功能不明。利用表达系统在哺乳动物细胞内表达目的基因是研究基

基因芯片技术及其研究现状和应用前景

  摘要:基因芯片技术是90年代中期以来快速发展起来的分子生物学高新技术,是各学科交叉综合的崭新科学。其原理是采用光导原位合成或显微印刷等方法,将大量DNA探针片段有序地固化予支持物的表面,然后与已标记的生物样品中DNA分子杂交,再对杂交信号进行检测分析,就可得出该样品的遗传信息。基因芯片技术目前国

基因敲除的原理与方法

基因敲除可以说是基因组 学、细胞分离培养以及转基因技术的组合。那么基因敲除的原理是什么呢? 基因敲除的方法有哪些呢?在此,做个小结,以供大家学习。一.概述:基因敲除是自80年代末以来发展起来的一种新型分子 生物学技术,是通过一定的途径使机体特定的基因失活或缺失的技术。通常意义上的基因敲除主要是应用D

简并寡核苷酸基因混编实验

实验材料 pBSII KS 质粒大肠杆菌 DH5α试剂、试剂盒 Pfx 聚合酶碱性磷酸酶通用缓冲液覆盖液刚果红溶液脱色液桦木木聚糖底物溶液PAHBAH 储液实验步骤 我们以 DNA 重组 D.thermophilum Rt46B.1 木聚糖酶基因( xynB) 及其 5 个相关的木聚糖酶基因为例

基因克隆的常用方法

基因克隆的常用方法 基因(gene)是遗传物质的最基本单位,也是所有生命活动的基础。不论要揭示某个基因的功能,还是要改变某个基因的功能,都必须首先将所要研究的基因克隆出来。特定基因的克隆是整个基因工程或分子生物学的起点。本文就基因克隆的几种常用方法介绍如下。

第二代差异显示系统与传统mRNA差异显示技术

真核生物中,从个体的生长、发育、衰老、死亡,到组织的分化、凋亡以及细胞对各种生物、理化因子的应答,本质上都涉及基因的选择性表达。高等生物大约有30 000个不同的基因,但在生物体内任意细胞中只有10%的基因得以表达,而这些基因的表达是按事件和空间顺序有序地进行着,这种表达的方式即为基因的差异

简并寡核苷酸基因混编实验

蛋白酶生化性质的改善可以通过对该酶基因的错掺突变和 DNA 混编方法实现。混编技术可用于同一基因的一组突变体,或者对相关家族基因的片段进行新的组合,产生嵌合突变基因产物。本实验来源「现代蛋白质工程实验指南」〔德〕K.M.阿恩特、K.M.米勒编著。实验材料pBSII KS 质粒大肠杆菌 DH5α试剂、

PCR技术应用二: 骨肿瘤诊断

  骨肿瘤较罕见,恶性骨肿瘤只占全身恶性肿瘤的1%,男多于女,性别比约为1.6 ∶1,均好发于10-30岁间,良性者以骨软骨瘤最多,依次为骨巨细胞瘤、内生软骨瘤 等,恶性者以骨肉瘤最多,依次为软骨肉瘤、纤维肉瘤等.骨恶性肿瘤的发生机理目 前认为是癌基因显性作用与抗癌基因失活的结果,是多种癌基因多阶段

基因芯片的制备、应用与前景

 摘要:基因芯片技术是90年代中期以来快速发展起来的分子生物学高新技术,是各学科交叉综合的崭新科学。其原理是采用光导原位合成或显微印刷等方法,将大量DNA探针片段有序地固化予支持物的表面,然后与已标记的生物样品中DNA分子杂交,再对杂交信号进行检测分析,就可得出该样品的遗传信息。基因芯片技术目前国内

传统mRNA差异显示技术(DDRT-PCR)和第二代差异显示系统

真核生物中,从个体的生长、发育、衰老、死亡,到组织的分化、凋亡以及细胞对各种生物、理化因子的应答,本质上都涉及基因的选择性表达。高等生物大约有30 000个不同的基因,但在生物体内任意细胞中只有10%的基因得以表达,而这些基因的表达是按事件和空间顺序有序地进行着,这种表达的方式即为基因的差异表达。其

基因芯片技术及其研究现状和应用前景

  生物芯片技术是随着"人类基因组计划"(human genome project, HGP)的进展而发展起来的,它是90年代中期以来影响最深远的重大科技进展之一,它融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有

实质等同性(转录组学)实验2

3.9 芯片数据介绍对简单的实质等同性实验来说,一个比较转基因系与对照之间基因表达的散点图就已足够了。文献 [ 5 ] 中参与两个实验的样品都标注在图15. 2中。结果用 GeneSpring 软件包显示,绘制了每组比较小麦系之间每个基因成对的平均强度,并突出显示少数感兴趣的基因(统计上显著差异表达

基因克隆技术

一、目的基因的获得 目的基因是指所要研究或应用的基因,也就是将要克隆或表达的基因。获得目的基因是分子克隆过程中最重要的一步。目前用于获得目的基因的方法有几种,如限制性内切酶直接分离法、文库筛选法、体外扩增法和人工合成法等,其中限制性内切酶法直接分离目的基因和多聚酶链式反应(PCR)或逆转录-