青岛能源所开发出新型功能化纳米细菌纤维素制备方法

纳米细菌纤维素(BC)是由微生物发酵生成的纤维素材料,具有独特的纳米多孔纤维结构,具有高结晶度、高比表面积、高聚合度、优良渗透性、高孔隙度、优良机械特性等众多优点。经过功能化的细菌纤维素在化学传感、生物成像、紫外屏蔽、油吸附、燃料电池、生物医用材料、离子检测、防伪标识等众多领域具有良好的应用前景。目前,BC主要通过物理涂覆或化学改性进行功能化。物理涂覆条件温和,但是功能化修饰分子易脱落。化学修饰改性的材料性能不佳,污染严重,难规模化生产。 针对上述问题,中国科学院青岛生物能源与过程研究所生物基材料组研究员咸漠、张海波带领课题组成员独辟蹊径开发出一种新型的功能化纳米细菌纤维素的制备方法,将6-羧基荧光素修饰的葡萄糖(6CF-Glc)作为底物,利用微生物Komagataeibacter sucrofermentans原位发酵产生具有非自然特征荧光功能性的BC。相关成果已发表于《自然-通讯》(Nature Communicati......阅读全文

基于细菌纤维素的高性能纳米纤维固体酸催化剂

  由于具有安全、绿色、腐蚀性小、易于回收等诸多优点,固体酸催化剂(SACs)逐渐取代传统液体酸催化剂,在各类化工生产中发挥着重要作用。目前固体酸催化成为酸催化领域的重要研究方向,受到研究人员的广泛关注。传统的SACs存在酸密度低、稳定性差、成本较高及催化性能有待提高等缺点。近年来,研究人员相继开发

细菌纤维素的简介

  其中比较典型的是醋酸菌属中的葡糖醋杆菌(Glucoacetobacterxylinum,旧名木醋杆菌Acetobacter xylinum),它具有最高的纤维素生产能力,被确认为研究纤维素合成、结晶过程和结构性质的模型菌株。细菌纤维素的合成是一个通过大量多酶复合体系(纤维素合成酶,cellulo

细菌纤维素的特性

  细菌纤维素和植物或海藻产生的天然纤维素具有相同的分子结构单元, 但细菌纤维素纤维却有许多独特的性质。  ①细菌纤维素与植物纤维素相比无木质素、果胶和半纤维素等伴生产物,具有高结晶度(可达95%,植物纤维素的为65%)和高的聚合度(DP值2 000~8 000);  ②超精细网状结构。细菌纤维素纤

青岛能源所开发出新型功能化纳米细菌纤维素制备方法

  纳米细菌纤维素(BC)是由微生物发酵生成的纤维素材料,具有独特的纳米多孔纤维结构,具有高结晶度、高比表面积、高聚合度、优良渗透性、高孔隙度、优良机械特性等众多优点。经过功能化的细菌纤维素在化学传感、生物成像、紫外屏蔽、油吸附、燃料电池、生物医用材料、离子检测、防伪标识等众多领域具有良好的应用前景

青岛能源所开发出新型功能化纳米细菌纤维素制备方法

  纳米细菌纤维素(BC)是由微生物发酵生成的纤维素材料,具有独特的纳米多孔纤维结构,具有高结晶度、高比表面积、高聚合度、优良渗透性、高孔隙度、优良机械特性等众多优点。经过功能化的细菌纤维素在化学传感、生物成像、紫外屏蔽、油吸附、燃料电池、生物医用材料、离子检测、防伪标识等众多领域具有良好的应用前景

细菌纤维素的培养方法

  采用不同的培养方法,如静态培养和动态培养,利用醋酸菌可以得到不同高级结构的纤维素。通过调节培养条件,也可得到化学性质有差异的细菌纤维素。例如,在培养液中加入水溶性高分子如羧甲基纤维素、半纤维素、壳聚糖、荧光染料以及葡聚糖内切酶等可获得不同微结构和聚集行为的纤维,而羧甲基纤维素或羧甲基甲壳素的导入

基于价廉的细菌纤维素的新型纳米纤维固体酸催化剂材料

  由于具有安全、绿色、腐蚀性小、易于回收等诸多优点,固体酸催化剂(SACs)逐渐取代传统液体酸催化剂,在各类化工生产中发挥着重要作用。目前固体酸催化成为酸催化领域的重要研究方向,受到研究人员的广泛关注。传统的SACs存在酸密度低、稳定性差、成本较高及催化性能有待提高等缺点。近年来,研究人员相继开发

产纤维素细菌能在火星生存

科技日报讯 (实习记者张佳欣)包括德国哥廷根大学研究人员在内的一个国际小组在研究康普茶在类似火星环境中存活的可能性时惊讶地发现,尽管模拟的火星大气破坏了康普茶培养物的微生物生态,但一种驹形杆菌属的能产生纤维素的细菌却存活了下来。这一发现发表在最近的《微生物学前沿》杂志上。 康普茶,也称为茶

产纤维素细菌能在火星生存

  包括德国哥廷根大学研究人员在内的一个国际小组在研究康普茶在类似火星环境中存活的可能性时惊讶地发现,尽管模拟的火星大气破坏了康普茶培养物的微生物生态,但一种驹形杆菌属的能产生纤维素的细菌却存活了下来。这一发现发表在最近的《微生物学前沿》杂志上。  康普茶,也称为茶菌或蘑菇茶,是一种甜味碳酸饮料。它

纳米微晶纤维素—混凝土强化剂

   工业上常见的副产品纤维素晶体被发现能够增加材料的凝结强度,意味着这种可再生资源可被用于提高建筑材料的性能。  纳米微晶纤维素(CNCs)是一种可再生资源,能从生物能源、农业和纸浆工业等领域的副产品中得到。CNCs是从一种叫做素微纤维的结构中提取出来的,它能让植物的枝干更加坚挺、轻质和有弹性。普

纤维素纳米化技术体系或将建立

  国家林业公益性行业科研专项重大项目“纳米纤维素绿色制备和高值化应用技术研究”项目启动会在北京举行。项目将致力于研发高得率、经济、绿色的纳米纤维素制备方法,研究纳米纤维素精确表征的体系及纳米纤维素高值利用的关键技术,研发具有储能、自洁、阻燃、吸附等特性的纳米纤维素高功能材料。  据项目负责人、国家

新方法让细菌变身纤维素“工厂”

  据瑞士苏黎世联邦理工学院官网报道,该校团队提出了一种利用细菌生产纤维素的新方法。这种方法遵循自然选择的进化机制,使科学家能快速培育出数以万计的细菌变种,从中选出能产生最多纤维素的菌株。  科学家一直在尝试将微生物变成活体“生产工厂”,以便能更快速地生产大量所需产品。这需要对细菌基因组进行有针对性

新方法让细菌变身纤维素“工厂”

科技日报北京8月13日电(记者张梦然)据瑞士苏黎世联邦理工学院官网报道,该校团队提出了一种利用细菌生产纤维素的新方法。这种方法遵循自然选择的进化机制,使科学家能快速培育出数以万计的细菌变种,从中选出能产生最多纤维素的菌株。湿态的细菌纤维素。 图片来源:苏黎世联邦理工学院科学家一直在尝试将微生物变成活

四种纳米纤维素生产菌株对木质纤维素衍生的抑制物

  通过预处理和酶促糖化,木质纤维素生物质作为生产细菌纳米纤维素(BNC)的低成本原料具有巨大的潜力。本项研究中,比较三种新型BNC生产菌株与Komagataeibacterxylinus ATCC 23770对抑制物的耐受性。所研究的抑制剂包括呋喃醛(糠醛和5-羟甲基糠醛)和酚类化合物(松柏醛和香

金属纳米颗粒可清除口腔细菌

  由莫斯科国立科技大学(NUST MISIS)与维亚茨基国立大学专家共同研制的新型牙齿清洁剂,可以从根本上改变口腔的微观环境,并消除在牙齿上形成的菌斑层,其效果已在基洛夫国家医学科学院口腔研究室的临床实践中得到证实。  实验中,志愿者使用这种含有金属纳米颗粒的新型牙齿清洁剂一个月后,口腔中菌群数量

新方法能快速廉价制造纳米纤维素

  据英国《每日邮报》网站4月12日报道,美国科学家表示,他们研发的新方法可以使用细菌,快速且廉价地制造出大量的纳米纤维素,而纳米纤维素则可以用于制造包括盔甲和智能手机显示屏等各种产品。   纳米纤维素由被分解成碎片的植物原材料组成,同其他纳米大小的材料一样,拥有大质量的同种物质所不具备的独特属性

日本首次成功制造纤维素纳米纤维片材

  日本王子控股公司与三菱化学公司合作,日前在全球首次成功制造出植物性纤维素纳米纤维透明片材。这种材料的特点在于,拥有比玻璃纤维更出色的特性,同时环境负荷较小,回收利用性高。两家公司将在王子控股设在东京都江东区的东云研究中心设置片材制造设备,开始制造及供应样品。   纤维素纳米纤维是一种将纸浆的植

国家纳米中心细菌膜纳米肿瘤疫苗研究获进展

  近日,中国科学院国家纳米科学中心赵潇、赵瑞芳和聂广军研究团队在细菌膜纳米肿瘤疫苗方面取得重要进展。相关研究成果以Nanocarriers based on bacterial membrane materials for cancer vaccine delivery为题,发表在Nature P

木材衍生的纳米纤维素纸半导体制成

  日本研究人员开发出一种纳米纤维素纸半导体,其展现了3D结构的纳米—微米—宏观跨尺度可设计性以及电性能的广泛可调性。研究结果日前发表在美国化学学会核心期刊《ACS纳米》上。  具有3D网络结构的半导体纳米材料拥有高表面积和大量孔隙,使其非常适合涉及吸附、分离和传感的应用。然而,同时控制电气特性、创

20~40nm-纳米纤维素的性能及应用

纳米纤维素是以竹、木、棉、麻、海藻等多种天然生物质为原料,通过绿色组分分离、纳米纤丝化处理技术,开发出的具有轻质、高强、可再生、生物可降解、生物相容性好等性能的一种高长径比纤维状材料,可应用于造纸、透明薄膜、气凝胶、隐身衣、生物组织工程、柔性及可穿戴电子等产业。纳米纤维素技术指标:直径:20~40n

版纳园低温纳米催化水解纤维素技术取得进展

  近日,中科院西双版纳热带植物园生物能源组在纤维素高选择性水解葡萄糖技术领域上取得新进展,相关研究成果在国际著名生物能源期刊Bioresource Technology发表,并申请ZL1项。  由于化石能源逐渐枯竭、能源需求不断增加和环境保护日益重要等因素的影响,人们已经认识到寻求清洁、可再生能源

“细菌造”纳米纸经得起极端环境考验

  4月18日,科技日报记者从中国科学技术大学获悉,该校俞书宏院士、管庆方副研究员等科研人员,利用合成云母和细菌纤维素,合成了一种具有优异机械和电绝缘性能,对极端条件具有良好耐受性的纳米纸张材料,该材料表现出优异的交替高温和低温耐受性、抗紫外线和原子氧特性。这项研究成果日前发表在《先进材料》上。  

国家纳米中心:细菌膜纳米肿瘤疫苗的研究取得重要进展

近日,中国科学院国家纳米科学中心赵潇、赵瑞芳和聂广军研究团队在细菌膜纳米肿瘤疫苗方面取得重要进展。相关研究成果以Nanocarriers based on bacterial membrane materials for cancer vaccine delivery为题,发表在Nature Pro

德用纳米纤维素3D打印人造耳

  最近,德国联邦材料测试和研究所利用木质纳米纤维素,通过3D打印技术制成了移植用的人造耳朵,可以作为先天性耳廓畸形儿童的植入物。  据研究人员迈克尔·豪斯曼介绍,制造人造耳朵的原料是可生物降解的木质纳米纤维素。借助生物绘图仪,具有黏性的纳米纤维素可以完美塑造复杂的构造,固化后的结构仍然非常稳定。他

纳米微粒可以摧毁顽固细菌生物膜

  不少老病号遇到过这种尴尬的局面:慢性炎症久治不愈,抗生素几乎失效。澳大利亚新南威尔士大学近日宣布,该校科学家用纳米微粒打碎了顽固的细菌生物膜。这一发现将为细菌生物膜引起的慢性炎症提供治疗思路。  应对生物膜细菌的耐药性,主要有两条思路:一是研发新的抗生素;二是打碎生物膜,把细菌分割开来。此次,新

纳米药物搭上-细菌顺风车-战癌王

许多胰腺肿瘤就像堡垒,周围环绕着密集的胶原蛋白和其他组织基质。这些组织可保护肿瘤并帮助它们免受免疫疗法的打击,从而导致免疫疗法对“癌王”胰腺癌束手无策。美国威斯康辛大学麦迪逊分校研究团队利用细菌渗透到癌性强化剂中并输送药物的方法,开辟了胰腺癌治疗新途径。研究结果发表在新一期《细胞》杂志上。胰腺癌是常

纳米微粒可以摧毁顽固细菌生物膜

  不少老病号遇到过这种尴尬的局面:慢性炎症久治不愈,抗生素几乎失效。澳大利亚新南威尔士大学近日宣布,该校科学家用纳米微粒打碎了顽固的细菌生物膜。这一发现将为细菌生物膜引起的慢性炎症提供治疗思路。    应对生物膜细菌的耐药性,主要有两条思路:一是研发新的抗生素;二是打碎生物膜,把细菌分割开来。此

细菌纳米复合材料如何对抗肿瘤

  近日,四川大学华西医院肿瘤中心教授陈念永团队在《纳米生物技术杂志》上发表论文,揭示了细菌可以通过多种策略与纳米材料偶联,在抗肿瘤治疗中发挥多种作用。  肿瘤生物学复杂性和异质性阻碍了有效癌症治疗方法的开发。虽然传统化疗在延长患者生存期方面发挥了重要作用,但其缺乏肿瘤特异性靶向性往往导致肿瘤部位药

欧盟利用纳米技术抗击医院“超级细菌”

  2012年,欧洲医院获得性感染(Hospital Acquired Infections)引起的死亡率,整整高出交通事故死亡率的2倍。主要原因是无处不在传染性极强的耐药“超级细菌”(Hospital Superbugs),例如,超级细菌通过床单或枕套等,在医院内形成交叉感染。医院的新生婴

纳米药物“搭上”细菌“顺风车”战“癌王”

许多胰腺肿瘤就像堡垒,周围环绕着密集的胶原蛋白和其他组织基质。这些组织可保护肿瘤并帮助它们免受免疫疗法的打击,从而导致免疫疗法对“癌王”胰腺癌束手无策。美国威斯康辛大学麦迪逊分校研究团队利用细菌渗透到癌性强化剂中并输送药物的方法,开辟了胰腺癌治疗新途径。研究结果发表在新一期《细胞》杂志上。胰腺癌是常