植物所等绿藻光系统I超级复合物结构解析方面取得进展
光合生物的光系统I(PSI)是一个极高效率的光能吸收和转化系统,几乎每一个吸收的光子都能产生一个电子,其量子转化效率超过90%。因此PSI高效吸能、传能和转能的结构基础受到科学家的广泛关注。目前,原核生物蓝藻、真核生物红藻和高等植物PSI超级复合物结构都已被解析,然而绿藻PSI的高分辨率结构长期处于空白。 假根羽藻是生长在潮间带的大型绿藻,涨潮时藻体生长在以蓝绿光和绿光为主的弱光环境中,并能够完成吸能、传能和转能过程以满足自身生长的需要;落潮时能够适应暴露的高光强环境并进行光保护,具有独特的光合作用特征。 中国科学院植物研究所匡廷云和沈建仁带领的研究团队与济南大学秦晓春团队、清华大学隋森芳团队合作,利用冷冻电镜技术,解析了假根羽藻光系统I-捕光复合物I(PSI-LHCI)超级复合物3.49埃分辨率的结构。研究发现,假根羽藻的PSI-LHCI具有13个核心复合物亚基、10个捕光天线复合物,是目前已报道的捕光天线数量最多的P......阅读全文
生物物理所在光合作用超级复合物结构研究中获重要进展
近日,中国科学院生物物理研究所柳振峰研究组、章新政研究组与常文瑞/李梅研究组通力合作,联合攻关,通过单颗粒冷冻电镜技术,在3.2埃分辨率下解析了高等植物(菠菜)光系统II-捕光复合物II超级膜蛋白复合体(PSII-LHCII supercomplex)的三维结构。该项研究工作于5月18日在《自然
酶标仪滤光系统
酶标仪最简单的是用滤光方式来划分。一般来说,可以分为滤光片型和光栅型两大类。也有一些酶标仪里面同时装上了滤光片和光栅。但是滤片和光栅并不能同时完成同一个检测,本质上还只是把滤片和光栅放在了一起,并没有使两者糅合而产生新的技术突破。 光栅型滤光系统具有使用方便,可以进行光谱扫描,灵活性等优点。当
光系统Ⅰ的组成
与PSⅡ相似,PSⅠ是由LHCⅠ和PSⅠ-RC组成,但是没有与放氧有关的锰簇合物和外周蛋白。PSⅠ-RC中的Chl-a也组成特殊的分子对,在原初光化学反应中起到原初电子供体作用的是P700 。最新的分辨率为3.4A的X射线晶体结构解析表明,PSⅠ是一个不对称的结构单元,晶胞参数为:a 5214.27
什么是光系统?
光合作用的光化学反应是由两个包括光合色素在内的光系统完成的,即光系统Ⅰ(简称PSⅠ)和光系统Ⅱ(简称PSⅡ)。每个光系统均具有特殊的色素复合体等物质。
研究发现蓝藻四聚体光系统I的生理和进化意义
近日,美国田纳西大学等科研机构的研究人员在Nature Plants上发表了题为“Physiological and evolutionary implications of tetrameric photosystem I in cyanobacteria”的文章,对蓝藻四聚体光系统Ⅰ的生理和
拟南芥转录复合物参与调控植物盐害反应机制
在自然界中植物的生长发育往往受到各种环境胁迫(Environmental stresses)的影响,如高温、低温及干旱等。其中土壤的盐碱化(Salinity stress)是限制农作物栽培及产量的重要环境因子,但是人们对植物耐盐害的潜在分子机制仍不十分清楚。WRKY家族是一类植物特有的转
中国科学家破解光合作用最重要“超分子机器”
植物光合作用的最初光能吸收和转换的过程由三个复合体协同完成,科学家称之为“超分子机器”。其中,“光系统II”位于最上游,极其重要,其结构解析的难度非常大。 5月20日,中国科学院生物物理研究所在北京召开新闻发布会宣布,该所柳振峰研究组、章新政研究组与常文瑞-李梅研究组通力合作,首次解析了菠菜光
光合作用中氧气形成细节揭示
据《自然》杂志3日发表的论文,美国和德国两个科研团队首次揭示了光合作用过程中氧气如何形成的微观细节,了解光合作用过程中的水分解对于开发将水转化为氢燃料的设备非常重要。 光合作用是植物、藻类和一些细菌利用阳光创造生长所需能量的过程。此前的研究表明,只需要4个连续的光子撞击植物的分子结构,就可启动
光合作用中氧气形成细节揭示
据《自然》杂志3日发表的论文,美国和德国两个科研团队首次揭示了光合作用过程中氧气如何形成的微观细节,了解光合作用过程中的水分解对于开发将水转化为氢燃料的设备非常重要。 光合作用是植物、藻类和一些细菌利用阳光创造生长所需能量的过程。此前的研究表明,只需要4个连续的光子撞击植物的分子结构,就可启动
植物所揭示植物免疫反应调控新途径
为成功侵染植物,病原菌往往通过向植物细胞内注射效应蛋白,抑制宿主的免疫反应。而植物的NOD类受体(NLRs)可特异识别效应蛋白,并激发效应子触发的免疫反应(ETI)。但在无病原菌侵染时持续激活免疫反应对植物的正常生长发育是不利的。SUMO化修饰是一种蛋白质翻译后修饰,影响蛋白质活性、稳定性、相互
植物所等发现植物免疫信号新组分
在植物的免疫反应中,病原微生物可以通过向植物体内注射效应蛋白来抑制植物的免疫反应进而增强其致病性,而植物也相应进化出了一类核苷酸结合富亮氨酸重复结构域受体蛋白(nucleotide-binding leucine-rich repeat domain-containing receptor,NL
植物所等发现植物免疫信号新组分
在植物的免疫反应中,病原微生物可以通过向植物体内注射效应蛋白来抑制植物的免疫反应进而增强其致病性,而植物也相应进化出了一类核苷酸结合富亮氨酸重复结构域受体蛋白(nucleotide-binding leucine-rich repeat domain-containing receptor,NL
光系统Ⅰ的催化过程
PS I 的作用中心色素分子P700,周围有LHC I ,P700激发态的电子原初受体是叶绿体a分子A0,次级受体A1为2个叶醌分子,再将电子传递给一个含4Fe-4S中心的铁硫蛋白(FeSx),最后电子供给含2Fe-2S中心的铁氧还蛋白(Fd),最后在Fd NADP还原酶(FNR)的催化下,将NAD
光系统的主要组成
光系统(photosystem,PS),是进行光吸收的功能单位,是由叶绿素、类胡萝卜素、脂和蛋白质组成的复合物。每一个光系统含有两个主要成分∶捕光复合物(light -harvesting complex,LHC)和光反应中心复合物(reaction-center complex)。光系统中的光吸收
光系统Ⅱ的功能特点
PSⅡ的功能是利用从光中吸收的能量将水裂解,并将其释放的电子传递给质体醌,同时通过对水的氧化和PQB2-的还原在类囊体膜两侧建立H+质子梯度。PSⅡ行使功能的前提是吸收光能,PSⅡ将LCHⅡ吸收的光能传递给PSⅡ反应中心,使中心色素产生一个高能电子,并传递给原初电子受体。这一过程产生了带正电荷的供体
PNAS:绿藻中的抗癌药物
加州大学圣迭戈分校的生物学家成功对绿藻进行了基因工程改造,使其能够大量生产一种复杂而昂贵的癌症治疗药物。这项研究开辟了低成本大量合成复杂蛋白药物的新途径,文章提前发表在美国国家科学院院刊PNAS杂志的网站上。 “这种抗癌药物的生产一般使用哺乳动物细胞,而我们能够在绿藻中生产完全一样的药物,
绿藻怎么培养出来的
在家中用鱼缸养鱼的时候,可能有的人想要培养出绿藻,要先确定好绿藻的特性。绿藻的生长需要充足的阳光和适宜的生长环境,可将鱼缸放在光线充足的地方,多晒太阳能促使绿藻长出,加入少量的液肥,还要提供氧气充足的环境,这样经过一段时间后,绿藻就能长出来了。不过需要注意的是,绿藻并不是越多越好,当绿藻过多的时候,
植物所发表光系统II结构及光合作用水氧化机理研究综述
在地球上生命进化的一大突破是具有放氧光合作用生物的产生,它能利用太阳能裂解水,放出氧气,将太阳能转变为生物可利用的化学能。光驱动的水裂解反应是放氧光合生物利用太阳能进行光合作用链式反应的第一步,发生于高等植物、藻类和放氧蓝藻等光合生物类囊体膜上的光系统II中。迄今为止,自然界只有光系统II可以在
植物所揭示植物暗形态建成的调控机制
植物根据黑暗或光照环境的差异采取截然不同的生长模式。在黑暗中,植物幼苗快速长高(暗形态建成),这种方式便于穿透土壤,并见光进行光合自养生长;而在光下,幼苗的纵向生长速度明显减慢(光形态建成),有利于减少能量消耗并保持茎干粗壮。植物的这种生长方式由光信号转导通路调控,但其调节机制仍不十分清楚。
解析大麦叶绿体PSINDH膜蛋白超大分子复合物空间结构
光合作用光反应过程是在一系列镶嵌在光合膜上的蛋白质超分子机器中进行的,通过光驱动光系统II(PSII)和光系统I(PSI)反应中心电荷分离及光合电子传递,将光能转化为化学能(ATP和NADPH),用于暗反应二氧化碳固定。PSI和PSII催化两种类型光合电子传递,分别为线性电子传递和环式电子传递。
植物“霸道总裁”的生存秘密
俗话说,人是铁,饭是钢,一顿不吃饿得慌。对绿色植物来说,最不可缺少的“粮食”就是阳光。 光合作用是绿色植物、藻类和细菌等利用阳光进行的地球上规模最大、最为重要的化学反应。然而人类对于植物光合作用的秘密并未完全掌握。 日前,由中科院院士匡廷云和研究员沈建仁带领的中国科学院植物研究所团队在《科学
大麦叶绿体PSINDH膜蛋白超大分子复合物空间结构
光合作用光反应过程是在一系列镶嵌在光合膜上的蛋白质超分子机器中进行的,通过光驱动光系统II(PSII)和光系统I(PSI)反应中心电荷分离及光合电子传递,将光能转化为化学能(ATP和NADPH),用于暗反应二氧化碳固定。PSI和PSII催化两种类型光合电子传递,分别为线性电子传递和环式电子传递。
解析大麦叶绿体PSINDH膜蛋白超大分子复合物空间结构
光合作用光反应过程是在一系列镶嵌在光合膜上的蛋白质超分子机器中进行的,通过光驱动光系统II(PSII)和光系统I(PSI)反应中心电荷分离及光合电子传递,将光能转化为化学能(ATP和NADPH),用于暗反应二氧化碳固定。PSI和PSII催化两种类型光合电子传递,分别为线性电子传递和环式电子传递。在环
二选一还是二合一?地衣共生藻研究获新发现
地衣是真菌和藻类互惠共生而组成的复合体,它的共生藻主要分为绿藻和蓝藻两大类,通常地衣只选择其中一类进行共生,即蓝藻型地衣或者绿藻型地衣。其中,蓝藻需要有液态水才能进行光合作用,而绿藻则可以在没有液态水的条件下通过气态水进行光合作用。近日,中国科学院昆明植物研究所研究人员在对青藏高原肺衣属的研究中发现
植物所关于入侵植物与本地植物的共存机制研究获进展
达尔文在《物种起源》中提出了关于外来物种归化的两个相互矛盾的假说。预适应假说认为亲缘关系近的物种更易归化,而达尔文归化假说认为亲缘关系远的物种更具归化的优势。这一矛盾被称为达尔文归化谜团。尽管生态学家为解开这一谜团付出了努力,但未达成一致结论。由于生态系统的复杂性以及研究方法的多样性,解开该谜团面临
PNAS:可让人变笨的绿藻病毒
一般来讲,病毒有特定的宿主,植物病毒很少能在动物细胞中存活,细菌病毒也无法生活在动物和植物,但也有意外的情况。最近这一发现就是一种常见绿藻病毒竟然可以感染人和动物,并能导致人类大脑功能下降。禽流感能感染人类就完全不是个事了,或者爱博拉、爱滋病这样的病毒原本就是非人类特异性病毒,只是进化给它们了特
植物所利用根系解剖结构揭示草原植物根系功能
通过根系性状理解根系功能及其对植物生长、生态系统过程和功能的影响是根系生态学研究的热点和难点问题。根的解剖结构是理解根系功能以及根系结构与功能关联的关键基础。然而,目前关于单子叶和双子叶草本植物的根系解剖结构及其揭示的根系功能的研究较匮乏。 中国科学院植物研究所研究员白文明研究组以内蒙古典
植物所揭示植物盐胁迫记忆调控新机制
为适应复杂多变的环境,植物能够对经历过的不利环境刺激产生一定的“记忆”,从而有利于更快更强地应对再次出现的胁迫。然而,人们对植物的胁迫“记忆”是否受其他环境因素的调节还知之甚少。 中国科学院植物研究所华学军研究组与金京波研究组合作,针对植物盐胁迫“记忆”的调控机制展开了研究。研究人员发现,拟南
植物所揭示裸子植物线粒体丢失基因的进化命运
线粒体经内共生事件起源后,丢失了大量的基因,演变为半自主性细胞器。不同生物支系的线粒体基因组差异巨大,尤其是相较于动物和其他真核生物(其蛋白质编码基因含量较稳定),陆地植物的多个支系中线粒体基因的转移/丢失经常发生。因此,植物线粒体编码基因的组成以及丢失基因的进化命运引发关注。 裸子植物代表了
昆明植物所揭示植物春化现象的分子调控机制
春化(vernalization)是指一、二年生种子作物在苗期需要经受一段低温处理,才能开花结实的现象。冬性草本植物(如冬小麦)一般于秋季萌发,经过一段营养生长后度过寒冬,于第二年夏初开花结实,这是因为冬性植物需要经历一定时间的低温才能形成花芽。春化也是植物适应性进化的结果。生长在低纬度地区的拟