Antpedia LOGO WIKI资讯

化学所在生物分子马达组装体性能调控方面取得新进展

以活性生物大分子为构筑基元,利用分子组装策略设计与构建仿生体系,模拟或调控生命体基本单元的结构和功能,已成为化学与生命科学交叉的前沿和热点。生命体活动所必需的能量来源是三磷酸腺苷(ATP),一般情况下由旋转生物分子马达蛋白ATP合酶在跨膜质子梯度势的推动下合成。 在国家自然科学基金委、科技部和中国科学院的支持下,中科院化学研究所胶体、界面与化学热力学重点实验室研究员李峻柏课题组长期致力于生物分子马达ATP合酶的分子组装与应用研究,并取得了系列进展。该研究团队将ATP合酶与光系统II、人工光酸分子或量子点进行共组装,实现了对自然界叶绿体结构的有效模拟和功能的大幅度提升(ACS Nano 2016, 10, 556; ACS Nano 2017, 11, 10175; ACS Nano 2018, 12, 1455; Adv. Funct. Mater. 2018, 28, 1706557; Angew. Chem. Int.......阅读全文

《细胞》:分子马达铸造记忆

科学家找到了将经历与认知联系起来的分子机制 大脑如何形成一次记忆?通常,我们的经历和相互作用会以某种方式在大脑中留下烙印,然而神经细胞究竟是如何改变它们的连接从而形成记忆,却一直是个未解之谜。如今,科学家表示,他们找到了将经历与认知联系起来的分子机制,而这一切似乎全部要归功于一台微小的分子发动机。

参与细胞移动分子马达介绍

分子马达(Motorprotein)是一类蛋白质,它们的构象会随着与ATP和ADP的交替结合而改变, ATP水解的能量转化为机械能 ,引起马达形变,或者是它和与其结合的分子产生移动。就是说,分子马达本质上是一类ATP酶。例如肌肉中的肌球蛋白(Myosin)会拉动粗肌丝向中板移动,引起肌肉收缩。而另外

《应用化学》-中科院化学所-生物分子马达组装

近日,在中国科学院、科技部和国家自然科学基金委的支持下,胶体、界面与化学热力学院重点实验室的研究人员与德国马普胶体界面研究所合作在生物分子马达的分子组装方面取得新进展,研究工作发表在近期出版的德国《应用化学》(Angew. Chem. Int. Ed. (2007, 46, 6996-7000))

美华裔学者发现新“分子马达”

  4月15日,美国肯塔基大学药学院教授郭培宣(Peixuan Guo)研究组公布了他们在“分子马达”领域的新成果。   分子马达是DNA、RNA分子在细胞内进行物理运动的重要机制。更重要的是,生物学家认为,这一理论指出了纳米药物的发展潜力。迄今为止,科学家已经发现了分子马达运动的两种形式,即“线

能做工的DNA 分子马达面世

一项7月20日发表于《自然》的研究中,物理学家用DNA链构建了一个分子级马达,并可通过“拧紧”DNA“弹簧”来储存能量。该技术为旨在寻找合成化学和药物递送等领域应用的“DNA折纸术”提供了新技巧。研究团队成员之一、德国慕尼黑工业大学的生物物理学家Hendrik Dietz指出,这不是第一个以DNA为

化学所在生物分子马达组装及其应用研究方面获进展

  自然界的细胞生命活动主要是通过生物分子马达协同运动来完成。近年来,以活性生物分子马达为构筑基元,利用分子组装技术,构建复杂的类细胞器结构,能很好地模拟细胞内的物质传递、能量转化和信息存储,已成为化学与生命科学交叉的研究热点。 组装的生物分子马达杂化体系增强光转换效率   在国家自然科学

Cell子刊:分子马达遭遇的“劫匪”

  美国西北大学医学院的科学家们发现,疱疹病毒能够“劫持”人体细胞中的分子马达,从而快速入侵神经系统。文章发表在Cell旗下的Cell Host & Microbe杂志上。   该研究团队在免疫和微生物学副教授Gregory Smith的领导下,发现疱疹病毒通过病毒蛋白VP1/2与动力蛋白

化学所在生物分子马达组装体性能调控方面取得新进展

  以活性生物大分子为构筑基元,利用分子组装策略设计与构建仿生体系,模拟或调控生命体基本单元的结构和功能,已成为化学与生命科学交叉的前沿和热点。生命体活动所必需的能量来源是三磷酸腺苷(ATP),一般情况下由旋转生物分子马达蛋白ATP合酶在跨膜质子梯度势的推动下合成。  在国家自然科学基金委、科技部和

人造分子马达——“DNA折纸”的标志牌

物理学家已经完全用DNA链建造了一个分子尺度的马达,并通过缠绕DNA“弹簧”来存储能量。德国慕尼黑工业大学的生物物理学家Hendrik Dietz说,这不是第一个DNA纳米马达,但它“肯定是第一个真正执行可测量机械工作的”,他的团队在7月20日的《Nature》杂志上报告了这一结果。这项技术增加了越

世界首个单分子电动马达在美问世

  据美国物理学家组织网9月5日(北京时间)报道,美国塔夫斯大学文理学院化学家用单个丁基甲基硫醚分子,制造出世界上第一个电动分子马达,其旋转方向和速率都能实时监控,有望为医疗、工程等领域的微型器械提供动力。研究论文发表在9月4日的《自然·纳米技术》上。   该电动分子马达仅1纳米宽,打破了现有最小