我国学者成功合成新型高效催化剂——二硫化钼纳米片
近期,固体所环境与能源纳米材料中心在常温常压下电催化氮气还原方面取得新进展。利用催化剂和电解质的相互作用,在抑制催化剂产氢活性的同时,提高了其催化氮气还原的能力。相关工作发表在期刊Advanced Energy Materials上。 氨是一种重要的化工原料,广泛应用于工业、农业,同时,也是一种重要的储能中间体和无碳能源载体。目前,工业上合成氨主要采用哈伯-博施(Haber-Bosch)法,该方法需要在高温高压(300~500℃、200~300atm)下进行,耗能大,年均能耗约占到世界能源总消耗的1~2%。而且,Haber-Bosch法需要高纯度的氢气作为原料;而高纯度的氢气一般是通过矿物燃料转化而来,其过程会排放大量的CO2(约占到温室气体年排放量的1.5%)。因此开发高效、低能耗、清洁的合成氨技术有重要意义。电催化固氮理论上可在常温常压下进行,且以水和氮气作为原料,因此被认为是一种潜在的替代工业合成氨的技术。目前,电化......阅读全文
研究在二维材料双光子吸收层数依赖特性取得进展
近期,中国科学院上海光学精密机械研究所微纳光电子功能材料实验室研究员王俊课题组在二硫化钼(MoS2)简并双光子吸收的层数依赖特性研究方面取得进展,为过渡金属硫化物的非线性光学性质研究以及在光子学方面的应用提供了理论和实验指导。相关研究成果发表于Photonics Research 7, 762-
研究实现乙烯羧甲酯化
原文地址:http://news.sciencenet.cn/htmlnews/2024/1/515853.shtm近日,中国科学院大连化学物理研究所张涛院士、研究员王爱琴团队在单原子催化乙烯羧甲酯化反应研究方面取得新进展,相关成果发表在《美国化学会杂志》上。乙烯羧甲酯化反应是工业上制备甲基丙烯酸甲
微型二硫化钼致动器“力大无穷”
美国研究人员开发出一种微型装置,可拉动自身165倍的重量。这种能像肌肉一样工作、将电能转化为机械能的新型致动器具有广阔的应用前景,未来有望在机电系统和机器人系统中大展拳脚。相关研究成果8月30日发表在《自然》杂志上。 这个超级微型“大力士”叫做“反串行连接生物形态驱动装置”,由美国罗格斯大学新
大连化物所利用单原子催化剂与载体协同机制实现乙烯羧甲酯化
近日,中国科学院院士、中国科学院大连化学物理研究所研究员张涛与研究员王爱琴团队在单原子催化乙烯羧甲酯化反应研究方面取得进展。 乙烯羧甲酯化反应(乙烯、CO和甲醇反应生成丙酸甲酯)是工业上制备甲基丙烯酸甲酯的重要途径。与传统丙酮氰醇法、异丁烯氧化法等相比,该法具有原料来源广、原子经济性高、选择性
二硫化钼摩擦离子电子学晶体管研究获进展
两种不同材料接触分离可产生静电荷并引发一个摩擦静电场,该摩擦电场可以驱动自由电子在外部负载流通,得到脉冲输出信号。一方面,摩擦纳米发电机 (TENG) 就是利用了这种脉冲信号实现了将外部环境机械能转换成电能,近期在许多领域实现了许多突破性进展,包括从多种机械运动获取能源、自驱动机械感应系统、高灵
《科学》(20240112出版)一周论文导读
原文地址:http://news.sciencenet.cn/htmlnews/2024/1/516021.shtm编译|冯维维Science, 12 Jan 2024, Volume 383, Issue 6679《科学》,2024年1月12日,第383卷,6679期 ?物理学Phys
兰州化物所工程导向固体超滑研究获新进展
摩擦磨损是运动机械普遍存在的现象。据统计,摩擦消耗1/3的一次能源,磨损导致60%的机械部件失效。构建低摩擦、高稳定、长寿命润滑技术是摩擦科学一直以来努力的方向。“超滑”是近年来提出的能极大突破现有材料润滑性能极限的新概念技术,指摩擦系数(μ)在0.001量级及以下的摩擦状态,摩擦系数和能耗均比
我国采用拓扑化学法制备1T’’’-MoS2晶体并解析晶体结构
二硫化钼作为层状过渡金属硫化物的典型代表,具有非常丰富的晶体结构,包括2H、3R、1T、1T’和1T’’’等。在这几种不同相中,2H MoS2的制备较为简单,在电催化、光电探测、储能、超导等领域都取得了非常多的研究成果。然而近几年来,理论学家通过计算预测了亚稳相1T’和1T’’’ MoS2具有非
基于石墨烯的高速度与高增益复合隧穿光电探测器
近年来,由高效吸光材料(如量子点、碳纳米管和钙钛矿)和石墨烯形成的复合光电探测器受到广泛的关注。吸光材料中的光生载流子能有效地转移到高迁移率的石墨烯通道中,从而实现超高光响应增益。然而,由于吸光材料与石墨烯界面处存在大量陷阱态,这种光电探测器的响应速度通常较慢,制约了其在高频场景下的应用。 最
纳米催化剂让水“燃烧”
研究人员使用新的纳米催化剂,利用阳光将水分子分解,最终制出氢气燃料 技术总是在寻找各种方法,使能源更容易地变“绿”。前不久,来自美国纽约州的研究人员制造出了一种新型长效催化剂,能够利用太阳光的能量,经过一系列反应,最终产生氢气。氢气是一种无碳燃料。 《科学》杂志在线报道称
我所实现合成气高选择性制高碳醇
原文地址:http://www.dicp.cas.cn/xwdt/kyjz/202311/t20231109_6930494.html 近日,我所催化基础国家重点实验室能源与环境小分子催化研究中心(509组群)邓德会研究员、于良副研究员团队与厦门大学王野教授团队合作在合成气(CO/H2)直接制高碳
我国利用压电材料实现对MoS2场效应晶体管动、静态调控
自2004年Geim等人第一次在实验室得到单层石墨烯以来,二维材料的出现为传感器领域的进一步发展提供了可能,相对于传统的三维材料,二维材料的层状结构决定了其器件厚度可以达到单原子层,为实现更轻、更薄、体积更小的电子器件提供了可能。相较于其他二维材料,以单层二硫化钼 (MoS2) 为代表的二维半导
二维纳米复合中空纤维超滤膜领域研究获进展
膜分离技术具有操作简单、能耗低、无二次污染等优点,其应用领域不断拓展。目前膜分离技术,尤其是超滤技术,由于其灵活性、性价比高、效率高、环境友好等优点,在污水处理、水净化、蛋白质浓缩、酶缩、酶提取等多个领域得到广泛应。然而传统高分子聚合物中空纤维超滤膜在使用过程中由于机械性能低、水通量小、亲水性差
调控原子界面催化过程可实现高效储钠
在“双碳”目标下,可再生能源逐步成为能源消费增量的主体。在推动可再生能源利用的关键技术中,储能技术的发展已成为实现“双碳”目标的重要支撑技术之一。近日,中国科学院大连化学物理研究所研究员邓德会团队与郑州大学教授张佳楠团队合作,在储能技术领域又有新突破。团队通过界面化学工程将二维2H-MoS2纳米
新研究通过调控原子界面催化过程实现高效储钠
近日,中国科学院大连化学物理研究所催化基础国家重点实验室能源与环境小分子催化研究组(509组)邓德会研究员团队与郑州大学张佳楠教授团队合作,通过界面化学工程将二维2H-MoS2纳米片组装在氮掺杂碳限域的铁原子催化剂(Fe(SA)-N-C)载体上,并将其作为钠离子电池的负极材料,在Fe(SA)-N-C
理化所超小NiO纳米片高活性电催化剂研究获进展
二维纳米材料因其独特的层板结构、大比例暴露活性位等优势,在光电催化方面展现了优越的性能,引起科研人员的广泛关注。层状双氢氧化物(水滑石,LDH)因其层板由多种组分构成、层板厚度可调等优势,在催化方面展现了极强的可调控性。 中国科学院理化技术研究所研究员张铁锐团队多年来集中纳米材料的可控设计以及
新型无负载流动相电催化体系实现高效电催化合成氨
近期,中国科学院合肥物质科学研究院固体物理研究所环境与能源纳米材料中心和液相激光加工与制备实验室合作,在常温常压下电催化氮气还原研究中取得新进展。相关研究成果以Efficient electrocatalytic nitrogen reduction to ammonia with aqueou
锂离子电池负极材料领域研究获重要进展
近日,广州大学化学化工学院教授王家海团队联合香港科技大学教授邵敏华团队在锂离子电池负极材料领域取得重要进展。相关研究发表于Nano Energy。陈辅周博士后为该论文第一作者,王家海教授和邵敏华教授为共同通讯作者,广州大学第一通讯单位。 开发高性能锂离子电池有助于解决过度使用化石能源带来的环境问题。
有机电荷转移分子调控二维材料电学特性研究取得进展
近日,中国科学院微电子研究所在有机电荷转移分子调控二维材料电学特性研究中取得新进展。 薄层过渡金属二硫化物(TMDCs)以其独特的电学、光电、机械和磁学特性为探索低维系统中的新物理特性和应用途径提供了一个新的平台。其中,在场效应晶体管应用中,少层二硫化钼(MoS2)可以突破传统半导体材料的短沟
中国科大二维磁性半导体材料研究获进展
中国科学技术大学国家同步辐射实验室副研究员闫文盛、孙治湖和刘庆华组成的研究小组在教授韦世强的带领下,利用同步辐射软X射线吸收谱学技术,在研究二维超薄MoS2半导体磁性材料的结构、形貌和性能调控中取得重要进展。该研究成果发表在《美国化学会志》上。 二维超薄半导体纳米片具有宏观上的超薄性、透明性
大连化物所通过调控原子界面催化过程实现高效储钠
近日,中国科学院大连化学物理研究所催化基础国家重点实验室能源与环境小分子催化研究组(509组)邓德会研究员团队与郑州大学张佳楠教授团队合作,通过界面化学工程将二维2H-MoS2纳米片组装在氮掺杂碳限域的铁原子催化剂(Fe(SA)-N-C)载体上,并将其作为钠离子电池的负极材料,在Fe(SA)-
我所通过调控原子界面催化过程实现高效储钠
近日,中科院大连化物所催化基础国家重点实验室能源与环境小分子催化研究组(509组)邓德会研究员团队与郑州大学张佳楠教授团队合作,通过界面化学工程将二维2H-MoS2纳米片组装在氮掺杂碳限域的铁原子催化剂(Fe(SA)-N-C)载体上,并将其作为钠离子电池的负极材料,在Fe(SA)-N-C的催化作用下
关于锂电池材料二硫化钼的介绍
二硫化钼是一种无机物,化学式为MoS2,是辉钼矿的主要成分。黑色固体粉末,有金属光泽。熔点2375℃,密度4.80g/cm³(14℃),莫氏硬度1.0~1.5。 辉钼矿的主要成分。黑色固体粉末,有金属光泽。化学式MoS2,熔点2375℃,密度4.80g/cm3(14℃),莫氏硬度1.0~1.5
纳米前沿最新集锦
1. JACS: 超高稳定性Na离子电池 常规的O3型Na离子电池在接触空气后会出现Na的析出和电极氧化的问题而使得其稳定性无法满足需求。 本文通过减小电极中Na层的层间距,增加过渡金属电极中金属离子的价态提高了Na离子电极材料的稳定性。在理论模拟中,可以通过在电极中引入电负性相当的金属离子
清华团队首次实现具有亚1纳米栅极长度的晶体管
晶体管是芯片的核心元器件。更小的栅极尺寸可以使得芯片上集成更多的晶体管,并带来性能上的提升。近日,清华大学集成电路学院教授任天令团队在小尺寸晶体管研究方面取得重要进展,首次实现了具有亚1纳米栅极长度的晶体管,该晶体管具有良好的电学性能。相关成果以“具有亚1纳米栅极长度的垂直硫化钼晶体管”为题,在
我国学者首次实现具有亚1纳米栅极长度的晶体管
晶体管是芯片的核心元器件。更小的栅极尺寸可以使得芯片上集成更多的晶体管,并带来性能上的提升。近日,清华大学集成电路学院教授任天令团队在小尺寸晶体管研究方面取得重要进展,首次实现了具有亚1纳米栅极长度的晶体管,该晶体管具有良好的电学性能。相关成果以“具有亚1纳米栅极长度的垂直硫化钼晶体管”为题,在线发
Cell子刊Joule:原位拉曼、单原子构筑Janus型催化剂
最近,南京大学物理学院吴兴龙教授课题组在电致应力诱导双金属Janus纳米片发生结构扭曲实现高效电催化产氢研究方面取得重要进展,最新研究成果以“Electric Strain in Dual Metal Janus Nanosheets Induces Structural Phase Trans
中国科大高效电解水制氢电极材料的设计与制备研究获进展
将可再生能源(如太阳能、风能、水位能等)以氢为媒介存储、运输和转化可实现环境友好和可持续发展的经济构型。当前95%以上的氢气来自于化石燃料,而水作为氢的重要来源之一,从其提取出来的氢的总能量是地球化石燃料热量的9000倍。将水电解制氢涉及两个重要的基本反应,即阴极水的还原和阳极水的氧化。然而,反
中性水全分解的“双面神”-三元纳米片电催化剂出炉
氢能作为一种能量高、洁净的可再生能源受到广泛关注。通过电化学水解制备氢气是当前研究热点之一。近年来,全水解电极催化剂的设计制备取得了瞩目的研究成果。然而,寻找能在中性水电解质中同时展现高活性、高稳定性的水氧化和还原非贵金属电催化剂仍然是电解水制氢研究领域的一大挑战。 近日,中国科学技术大学教授
光驱动的二硫化钼胶体马达实现了“人形奔跑”
自然界中,生物集群可以精准而快速地调整其形态以适应复杂多变的环境。例如,海洋中鱼群可以随时变换其形态以有效躲避鲨鱼的攻击。那么人工合成的胶体马达是否也能够响应环境的变化而精准调整其集群的形态呢?近日,哈尔滨工业大学贺强教授研究团队设计并制备了紫外光驱动的二硫化钼胶体马达,实现了光驱动纳米尺度胶体