微环境“泛酸”——肿瘤转移的罪魁祸首

肿瘤的发生发展是一个多基因、多阶段、多步骤的复杂过程,其与肿瘤微环境(TME)是一个不可分割的整体,已有大量研究表明有助于促进肿瘤的增殖、侵袭、粘附、血管生成,进而促使恶性肿瘤产生,同时表明低PH应是肿瘤转移的重要影响因素之一,但具体作用机制悬而未决。近日,麻省理工学院的研究人员分析了TME低PH状态的成因,解析了酸性TME对肿瘤转移相关基因表达的影响,指出TME低PH是侵袭性肿瘤表型的重要驱动因素,开辟了为TME“降酸”的肿瘤治疗新途径。 酸性TME——糖酵解功不可没 TME,即肿瘤细胞产生和生活的内环境,其中不仅包括了肿瘤细胞本身,还有其周围的成纤维细胞、免疫和炎性细胞、胶质细胞等各种细胞,同时也包括附近区域内的细胞间质、微血管以及浸润在其中的生物分子。TME具有显着的低氧、低PH以及高压的特点,使得大量生长因子、细胞趋化因子和各种蛋白水解酶所产生的免疫炎性反应在TME中高度活跃。低氧好理解,血供不足的肿瘤自然含氧量......阅读全文

微环境“泛酸”——肿瘤转移的罪魁祸首

  肿瘤的发生发展是一个多基因、多阶段、多步骤的复杂过程,其与肿瘤微环境(TME)是一个不可分割的整体,已有大量研究表明有助于促进肿瘤的增殖、侵袭、粘附、血管生成,进而促使恶性肿瘤产生,同时表明低PH应是肿瘤转移的重要影响因素之一,但具体作用机制悬而未决。近日,麻省理工学院的研究人员分析了TME低P

JCB:关闭糖酵解的肿瘤抑制子

  众所周知,癌细胞能够通过更高效率的代谢通路(糖酵解)生成能量。这种被称为Warburg效应的现象,使癌细胞能够在实体瘤中的低氧条件下生存下来。   上世纪20年代,德国科学家奥托•瓦伯格(Otto Warburg)发现迅速生长的组织中细胞代谢调节(如胚胎或肿瘤)不同于正常成熟细胞。通过糖酵

新型纳米技术给癌症治疗带来新突破!

  癌症是全球人类死亡的主要原因之一。目前主流的癌症治疗方式(例如手术,化疗和放疗)仅显示有限的治疗结果,部分原因是肿瘤生物学的复杂性和异质性。近几十年来,随着纳米技术的迅速发展,纳米医学已经引起了越来越多的关注,因为个性化医学的发展前景广阔,癌症诊断和治疗更加高效可靠。   与通过氧化磷酸化激活

糖酵解试验

不同的微生物可对各种糖类、醇类、糖昔类等进行分解,但其分解能力和分解产物均因不同的微生物而不同(见表)。如大肠杆茵能分解乳糖和葡萄糖,而沙门氏茵只能分解葡萄糖,不能分解乳糖。大肠杆菌有甲酸解氢酶,能将分解糖所生成的甲酸进一步分解成二氧化碳和氢气.故产酸又产气,而沙门氏茵无甲酸解氢酶,分解葡萄糖仅产酸

糖酵解途径

       糖的无氧酵解途径——糖酵解途径  是在无氧情况下,葡萄糖分解生成乳酸的过程。它是体内糖代谢最重要的途径。  糖酵解途径包括三个阶段:  第一:引发阶段。葡萄糖的磷酸化、异构化。  已糖激酶(催化)  磷酸化  ①葡萄糖 葡萄糖-6-磷酸 (消耗1分子ATP)  为不可逆的磷酸化反应,酵

糖酵解途径

糖的无氧酵解途径——糖酵解途径   是在无氧情况下,葡萄糖分解生成乳酸的过程。它是体内糖代谢最重要的途径。       糖酵解途径包括三个阶段:       第一:引发阶段。葡萄糖的磷酸化、异构化。   已糖激酶(催化)       磷酸化       ①葡萄糖 葡萄糖-6-磷酸 (消

糖酵解途径

     糖的无氧酵解途径——糖酵解途径  是在无氧情况下,葡萄糖分解生成乳酸的过程。它是体内糖代谢最重要的途径。    糖酵解途径包括三个阶段:    第一:引发阶段。葡萄糖的磷酸化、异构化。  已糖激酶(催化)    磷酸化    ①葡萄糖 葡萄糖-6-磷酸 (消耗1分子ATP)    为不可逆

糖酵解试验

不同的微生物可对各种糖类、醇类、糖昔类等进行分解,但其分解能力和分解产物均因不同的微生物而不同(见表)。如大肠杆茵能分解乳糖和葡萄糖,而沙门氏茵只能分解葡萄糖,不能分解乳糖。大肠杆菌有甲酸解氢酶,能将分解糖所生成的甲酸进一步分解成二氧化碳和氢气.故产酸又产气,而沙门氏茵无甲酸解氢酶,分解葡萄糖仅产酸

抑制肿瘤糖酵解有助于CTLA4阻断的治疗效果

  Nature |   细胞能量代谢的重编程是肿瘤的重要标志之一。肿瘤细胞的高葡萄糖消耗和乳酸产生可能会限制肿瘤微环境中效应细胞的营养来源,从而影响效应T细胞的增殖和功能【1】。限制肿瘤微环境中的代谢竞争可以提高免疫治疗的有效性。而CD28信号在活化T细胞的糖代谢中具有重要作用,被认为是T细胞代谢

上海生科院等发现Cdc25A促进肿瘤糖酵解的分子机制

  8月3日,国际学术期刊《自然-通讯》(Nature Communication)在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所杨巍维研究组与美国MD Anderson癌症中心Zhimin Lu研究组的合作论文:PKM2 dephosphorylation by Cdc25A p

糖酵解的历史

今天已知的糖酵解途径需要近100年的时间才能完全阐明。需要许多较小实验的综合结果才能从整体上理解该途径。了解糖酵解的xxx步始于19世纪的葡萄酒工业。出于经济原因,法国葡萄酒业试图调查为什么葡萄酒有时会变得令人讨厌,而不是发酵成酒精。法国科学家路易斯巴斯德在1850年代研究了这个问题,他的实验结果开

糖酵解的途径

糖酵解的第一阶段是由葡萄糖分解成丙酮酸的过程,称为糖酵解途径。

什么是糖酵解

糖的无氧氧化称为糖酵解,葡萄糖或糖原在无氧或缺氧条件下,分解为乳酸同时产生少量ATP的过程,由于此过程与酵母菌使糖生醇发酵的过程基本相似,故称为糖酵解。催化糖酵解反应的一系列酶存在于细胞质中,因此糖酵解全部反应过程均在细胞质中进行。糖酵解是所有生物体进行葡萄糖分解代谢所必须经过的共同阶段。生物在无氧

糖酵解的历史

今天已知的糖酵解途径需要近100年的时间才能完全阐明。需要许多较小实验的综合结果才能从整体上理解该途径。了解糖酵解的xxx步始于19世纪的葡萄酒工业。出于经济原因,法国葡萄酒业试图调查为什么葡萄酒有时会变得令人讨厌,而不是发酵成酒精。法国科学家路易斯巴斯德在1850年代研究了这个问题,他的实验结果开

糖酵解的调节

正常生理条件下,人体内的各种代谢过程受到严格而精细的调节,以保持内环境稳定,适应机体生理活动的需要。这种调节控制主要是通过改变酶的活性来实现的。己糖激酶(葡萄糖激酶)、磷酸果糖激酶-1、丙酮酸激酶是糖酵解的关键酶,它们的活性大小,直接影响着整个代谢途径的速度和方向,其中以磷酸果糖激酶-1最为重要。1

什么是糖酵解

糖酵解是将葡萄糖C6H12O6转化为丙酮酸CH3COCOOH的代谢途径。该过程中释放的自由能用于形成高能分子三磷酸腺苷(ATP)和还原型烟酰胺腺嘌呤二核苷酸(NADH)。糖酵解是由酶催化的十个反应的序列。糖酵解是一种不需要氧气的代谢途径。糖酵解在其他物种中的广泛发生表明它是一种古老的代谢途径。事实上

复旦大学江一舟团队发表重要综述:饮食干预对癌症等人类疾病的影响

  3月11日,复旦大学附属肿瘤医院江一舟研究团队在期刊《 Signal Transduction and Targeted Therapy》上发表了题为“Effects of dietary intervention on human diseases: molecular mechanisms

糖酵解的物质概述

  生物在无氧条件下,从糖的降解代谢中获得能量的途径,也是大多数生物进行葡萄糖有氧氧化的一个准备途径。在此过程中,六碳的葡萄糖分子经过十多步酶催化的反应,分裂为两分子三碳的丙酮酸,同时使两分子腺苷二磷酸(ADP)与无机磷酸(Pi)结合生成两分子腺苷三磷酸(ATP)。  丙酮酸的进一步代谢,因生物种属

糖酵解途径的概述

  生物在无氧条件下,从糖的降解代谢中获得能量的途径,也是大多数生物进行葡萄糖有氧氧化的一个准备途径。在此过程中,六碳的葡萄糖分子经过十多步酶催化的反应,分裂为两分子三碳的丙酮酸,同时使两分子腺苷二磷酸(ADP)与无机磷酸(Pi)结合生成两分子腺苷三磷酸(ATP)。  丙酮酸的进一步代谢,因生物种属

糖酵解途径及阶段

1.概念:在无氧情况下,葡萄糖分解生成乳酸的过程。2.反应过程糖酵解分三个阶段(1)第一阶段:引发阶段。由葡萄糖生成1,6-果糖二磷酸①葡萄糖的磷酸化、异构化、再磷酸化生成1,6-果糖二磷酸:葡萄糖磷酸化成为葡萄糖-6-磷酸,由己糖激酶催化。为不可逆的磷酸化反应,酵解过程关键步骤之一,是葡萄糖进入任

糖酵解全过程

在缺氧情况下,葡萄糖生成乳酸的过程称之为糖酵解。糖酵解的反应部位:胞浆。第一阶段:一分子葡萄糖分解成2分子的丙酮酸;第二阶段:由丙酮酸转变成乳酸。由葡萄糖分解成丙酮酸,称之为糖酵解途径。糖酵解的原料:葡萄糖。糖酵解的产物:2丙酮酸(乳酸)+2atp.关键步骤(底物水平磷酸化):1,3-二磷酸甘油酸转

糖酵解的调节反应

糖酵解的调节反应,医学教育网整理如下:糖酵解途径中有3个不可逆反应:分别由己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶1和丙酮酸激酶催化的反应。它们是糖无氧酵解途径的三个调节点,其中以6-磷酸果糖激酶1的活性是该途径中的主要调节点。(一)己糖激酶活性的别构调节骨骼肌中的己糖激酶的Km相对较小,在血糖达到

糖酵解全过程

在缺氧情况下,葡萄糖生成乳酸的过程称之为糖酵解。糖酵解的反应部位:胞浆。第一阶段:一分子葡萄糖分解成2分子的丙酮酸;第二阶段:由丙酮酸转变成乳酸。由葡萄糖分解成丙酮酸,称之为糖酵解途径。糖酵解的原料:葡萄糖。糖酵解的产物:2丙酮酸(乳酸)+2atp.关键步骤(底物水平磷酸化):1,3-二磷酸甘油酸转

糖酵解的反应过程

1.葡萄糖磷酸化糖酵解第一步反应是由己糖激酶催化葡萄糖的C6被磷酸化,形成6-磷酸葡萄糖。该激酶需要Mg2+离子作为辅助因子,同时消耗一分子ATP,该反应是不可逆反应。2.6-磷酸葡萄糖异构转化为6-磷酸果糖这是一个醛糖-酮糖同分异构化反应,此反应由磷酸己糖异构酶催化醛糖和酮糖的异构转变,需要Mg2

糖酵解的生理意义

糖酵解可以把释放的自由能转移到ATP中。糖酵解也是果糖、甘露糖、半乳糖等己糖的共同降解途径。果糖及甘露糖通过己糖激酶的催化作用可转变成果糖-6-磷酸,果糖还可以通过一系列酶的作用转变成3-磷酸甘油醛。半乳糖可以在一些酶催化下转变成1-磷酸葡萄糖。有些先天性代谢疾病是由于上述果糖与半乳糖代谢中的某些酶

糖酵解过程是什么

1、葡萄糖磷酸化糖酵解第一步反应是由己糖激酶催化葡萄糖的C6被磷酸化,形成6-磷酸葡萄糖。该激酶需要Mg2+离子作为辅助因子,同时消耗一分子ATP,该反应是不可逆反应。2、6-磷酸葡萄糖异构转化为6-磷酸果糖这是一个醛糖-酮糖同分异构化反应,此反应由磷酸己糖异构酶催化醛糖和酮糖的异构转变,需要Mg2

糖酵解的反应过程

糖酵解的反应过程可分两个阶段:①活化吸能阶段,通过消耗2分子ATP使1分子葡萄糖裂解为2分子3碳糖。②3碳糖氧化释放能量阶段,产生2分子丙酮酸、2分子NADH和4分子ATP。糖酵解过程净产生ATP 2分子。

糖酵解的具体过程

糖酵解可分为二个阶段,活化阶段和放能阶段。 (1)葡萄糖磷酸化(Phosphorylation)“葡萄糖氧化”是放能反应,但“葡萄糖”是较稳定的化合物,要使之放能就必须给予“活化能”来推动此反应,即必须先使“葡萄糖”从“稳定状态”变为“活跃状态”,活化1个葡萄糖需要消耗1个ATP——由ATP放出1个

糖酵解有几个途径

生物体内葡萄糖分解有三种途径:1.有氧条件下,三羧酸循环2.有氧条件下,磷酸戊糖途径3.无氧条件下,葡萄糖生成乳酸,这一途径叫做糖酵解。糖酵解分为两个阶段共10个反应:第一阶段从葡萄糖生成2个磷酸丙糖。第二阶段由磷酸丙糖转变成丙酮酸,是生成ATP的阶段。 最后丙酮酸还原生成乳酸。

糖酵解过程是什么

1、葡萄糖磷酸化糖酵解第一步反应是由己糖激酶催化葡萄糖的C6被磷酸化,形成6-磷酸葡萄糖。该激酶需要Mg2+离子作为辅助因子,同时消耗一分子ATP,该反应是不可逆反应。2、6-磷酸葡萄糖异构转化为6-磷酸果糖这是一个醛糖-酮糖同分异构化反应,此反应由磷酸己糖异构酶催化醛糖和酮糖的异构转变,需要Mg2