苏州纳米所在氮化硼气凝胶研究中获进展
气凝胶,被誉为改变世界的新材料,具有孔隙率高、比表面积大、密度低、绝热性能好等优异理化性质,在热/声/电绝缘、催化剂/药物载体、星际尘埃收集、环境修复、能源与传感等领域具有重要应用前景。然而,其自身力学缺陷,如强度弱、易脆、变形能力差等弊端,尤其是较宽温度范围内抵抗不同载荷冲击能力,成为气凝胶获得实际应用的最重要障碍之一。 针对上述问题,中国科学院苏州纳米技术与纳米仿生研究所研究员张学同领导的气凝胶团队与德国科学家合作,将实验设计与理论计算相结合,通过溶剂组分调控氢键网络,寻找到一条简便、高效、绿色的合成路径,成功制备得到超柔性氮化硼纳米带气凝胶,并实现了气凝胶材料在很宽温度范围内(-196°C~1000°C)及不同载荷冲击形式(压缩、弯曲、扭曲、剪切等)下的柔性保持。 研究表明,该氮化硼气凝胶由超薄(~3.2 nm)、大长径比(几百)、多孔带状纳米结构相互缠绕、搭接而成,表现出超轻(~15 mg cm-3)、热绝缘(~......阅读全文
苏州纳米所在氮化硼气凝胶研究中获进展
气凝胶,被誉为改变世界的新材料,具有孔隙率高、比表面积大、密度低、绝热性能好等优异理化性质,在热/声/电绝缘、催化剂/药物载体、星际尘埃收集、环境修复、能源与传感等领域具有重要应用前景。然而,其自身力学缺陷,如强度弱、易脆、变形能力差等弊端,尤其是较宽温度范围内抵抗不同载荷冲击能力,成为气凝胶获
苏州纳米所在氮化硼气凝胶研究中获进展
气凝胶,被誉为改变世界的新材料,具有孔隙率高、比表面积大、密度低、绝热性能好等优异理化性质,在热/声/电绝缘、催化剂/药物载体、星际尘埃收集、环境修复、能源与传感等领域具有重要应用前景。然而,其自身力学缺陷,如强度弱、易脆、变形能力差等弊端,尤其是较宽温度范围内抵抗不同载荷冲击能力,成为气凝胶获
什么是气凝胶
溶胶或溶液中的胶体粒子或高分子在一定条件下互相连接,形成空间网状结构,结构空隙中充满了作为分散介质的液体(在干凝胶中也可以是气体,干凝胶也称为气凝胶),这样一种特殊的分散体系称作凝胶。不太好理解的话,你可以把凝胶想象成海绵。吸饱了水的海绵就是“水凝胶”,干燥的海绵(可以视为吸饱了气体)就是“气凝胶”
气凝胶材料酝酿市场爆发
气凝胶,英文名称为“aerogel”,意为“飞行的凝胶”(组合词areo-gel)。凝胶怎么会飞?想象一下,如果把水母的水分“拿掉”却不改变其体积大小,将会如何?气凝胶即是如此,它自身的80%~99.8%以气态形式存在——这也正是它的神奇之处,气凝胶是人类能够人工制造出来的最轻的非晶固态材料,
气凝胶助力太赫兹技术应用
原文地址:http://news.sciencenet.cn/htmlnews/2023/12/515062.shtm科技日报讯 (记者刘霞)瑞典林雪平大学科学家在最新一期《先进科学》杂志上发表研究,展示了一种由纤维素和导电聚合物制成的新型气凝胶。这种气凝胶可对通过其中的高频太赫兹光进行调节,为医学
气凝胶绝热毡的绝热原理
气凝胶绝热毡的绝热原理是什么气凝胶,也称为干凝胶,密度仅为空气密度的2.75倍,是世界上密度最小的固体。气凝胶依照其组成不同可以分为碳系,硅系,硫系,金属氧化物系,金属系等。可是现在开发和使用较多的是硅系气凝胶——二氧化硅气凝胶。气凝胶是一种新式轻质纳米多孔产品,它具有纳米结构(典型孔径小于50nm
六方氮化硼的裂纹传播
如果散装材料能够承受高负载而不会发生任何不可逆转的损坏(例如塑性变形),则其通常很脆,且可能会发生灾难性的破坏。这种强度和断裂韧性之间的折衷也延伸到了二维材料空间。例如,石墨烯具有超高的内在强度(约 130 GPa)和弹性模量(约 1.0 terapascal),但很脆,断裂韧性低。表面弹性效应
二氧化硅气凝胶的溶胶凝胶过程分析
溶胶-凝胶工艺经常用于制备介孔材料,介孔材料由于具有特殊的性能已经应用于多各行业,例如建筑、绝缘材料、特殊玻璃或陶瓷等。它们的制备通常需要两步工艺:步聚合形成凝胶(添加引发剂),第二步干燥凝胶获得硬质材料。 在步中,配方(引发剂浓度、单体性质)和凝胶过程(温度条件)决定了最终的凝胶性质
陶瓷气凝胶研究取得新进展
西安交通大学材料学院王红洁教授课题组基于前期在弹性陶瓷气凝胶变形和隔热机理方面的相关研究,从结构设计的角度,提出并制备了一种由碳化硅基陶瓷纳米线构筑的层状陶瓷气凝胶。近日,该研究成果发表于《自然·通讯》。 陶瓷气凝胶具有轻质、化学稳定和超级隔热等优点,但其应用受到脆性和低强度的限制。为了提高其
陶瓷气凝胶研究取得新进展
原文地址:http://news.sciencenet.cn/htmlnews/2023/11/512177.shtm西安交通大学材料学院王红洁教授课题组基于前期在弹性陶瓷气凝胶变形和隔热机理方面的相关研究,从结构设计的角度,提出并制备了一种由碳化硅基陶瓷纳米线构筑的层状陶瓷气凝胶。近日,该研究成果
新型气凝胶助力太赫兹技术应用
瑞典林雪平大学科学家在最新一期《先进科学》杂志上发表研究,展示了一种由纤维素和导电聚合物制成的新型气凝胶。这种气凝胶可对通过其中的高频太赫兹光进行调节,为医学成像、通信等领域带来新的应用可能性。 太赫兹波,位于电磁波谱的微波和红外光之间,因高频率而备受关注。其在太空探索、安全技术、通信系统以及
杂化气凝胶制备首用真空干燥
在科技部、国家自然科学基金委的大力支持下,中科院化学研究所高分子物理与化学国家重点实验室的科研人员日前首次通过简便的真空干燥技术,制备了弹性低密度有机-无机杂化气凝胶。这种制备方法简便、性能优异、易于表面功能化的气凝胶材料对于拓展气凝胶的实际应用具有重要的意义。 科研人员首先通过分子设计,
透明气凝胶提高双层玻璃隔热能力
美国科罗拉多大学研究团队开发出一种方法,通过添加透明气凝胶来更好地隔热,这种方法可用于窗户的双层玻璃中。在发表于最新一期《自然·能源》杂志上的论文中,该团队描述了气凝胶的制作方法,以及使用这种材料的窗户有望在很大程度上提高能源效率。 双层玻璃之间是隔热空气,可提高房屋的保温隔热水平。尽管如此,此
气凝胶:能改变世界的多功能材料
气凝胶具有高比表面积、高空隙率等特殊的微观结构特点,化学性能稳定、导热系数低、耐高温、使用温度范围广、寿命长。近年来,中国、美国、欧洲等国家和地区的研究人员通过改进气凝胶制备工艺,开发出生物质基气凝胶等多种新型气凝胶。 气凝胶是一种超材料,它非常轻,即使把一块气凝胶放在花蕊上也不会将其压弯。目
纳米气凝胶毡由那些材料制成的
纳米气凝胶毡由那些材料制成的?气凝胶隔热材料简介 纳米气凝胶复合隔热材料,是利用气凝胶的隔热性能,再通 过特殊生产工艺复合而成,是一种导热系数极低的无机多孔隔热 材料。 1、独特的纳米结构 由下图(10万倍电镜照片)可见材料内部孔隙均在50-80纳米之间,本材料孔隙
纳米纤维气凝胶竟然能感受温度变化?
具有超弹性和抗疲劳性的轻质可压缩材料,尤其是其中适应广阔温度范围的材料,是航空航天、机械缓冲、能量阻尼和软机器人等领域的理想材料。许多低密度的聚合物泡沫是高度可压缩的,但它们在重复使用时往往易疲劳,并在聚合物玻璃化转变和熔融温度附近发生超弹性退化。尽管研究者已经开发出各种热稳定的轻质金属和陶瓷泡
凝胶色谱气相色谱质谱联用仪
凝胶色谱-气相色谱-质谱联用仪是一种用于化学、农学、林学、食品科学技术领域的分析仪器,于2016年10月28日启用。 技术指标 1.气相色谱仪:1.1操作最高温度:450℃;1.2程序升温的阶数:20 阶;1.3分流/不分流毛细管进样口;1.4 压力设定范围:0~970kPa;1.5 分流比
超级隔热陶瓷气凝胶可用于航天领域
超级隔热陶瓷气凝胶材料在高温下保持了结构稳定的良好力学和耐高温性能。兰州大学供图 兰州大学土木工程与力学学院青年教授张强强与哈尔滨工业大学、美国加州大学洛杉矶分校和伯克利分校的学者合作,研制出一种同时具备超轻、高力学强度和超级隔热三大特点的陶瓷气凝胶。利用其设计的超级隔热系统可应用于航天器等领域。
纳米气凝胶毡由那些材料制成的?
纳米气凝胶毡由那些材料制成的?气凝胶隔热材料简介 纳米气凝胶复合隔热材料,是利用气凝胶的隔热性能,再通 过特殊生产工艺复合而成,是一种导热系数极低的无机多孔隔热 材料。 1、独特的纳米结构 由下图(10万倍电镜照片)可见材料内部孔隙均在50-80纳米之间,本材料孔隙
气凝胶:能改变世界的多功能材料
气凝胶具有高比表面积、高空隙率等特殊的微观结构特点,化学性能稳定、导热系数低、耐高温、使用温度范围广、寿命长。近年来,中国、美国、欧洲等国家和地区的研究人员通过改进气凝胶制备工艺,开发出生物质基气凝胶等多种新型气凝胶。 气凝胶是一种超材料,它非常轻,即使把一块气凝胶放在花蕊上也不会将其压弯。目前
透明气凝胶提高双层玻璃隔热能力
美国科罗拉多大学研究团队开发出一种方法,通过添加透明气凝胶来更好地隔热,这种方法可用于窗户的双层玻璃中。在发表于最新一期《自然·能源》杂志上的论文中,该团队描述了气凝胶的制作方法,以及使用这种材料的窗户有望在很大程度上提高能源效率。 双层玻璃之间是隔热空气,可提高房屋的保温隔热水平。尽管如此,
超弹电磁屏蔽气凝胶研究取得进展
屏蔽电磁干扰对人类健康和电子设备可靠性具有重要影响。根据电磁屏蔽机理,电导率是决定电磁屏蔽效率的关键因素,因而传统的电磁屏蔽材料以导电金属为主。但金属存在材料密度大、价格高、易腐蚀、柔性差等问题,难以满足新一代电子设备的要求。聚合物/导电填料纳米复合材料具有密度低、柔性好、成本低等优点,且该材料还可
美空军资助开发纳米氮化硼涂料
在美国空军的资助之下,美国国家航空暨太空总署(NASA)与美国宾汉顿大学成功研制出氮化硼散热涂料,可以承受更高温度而使飞机飞行速度提升,未来10年内,飞机可能在不到1小时的时间用5倍音速从美国东岸飞到西岸! 虽然,目前氮化硼的单价高达每克1000美元,初步商业化之后小老百姓们也是坐不起的,
氮化硼表面制备石墨烯单晶获突破
中科院上海微系统所信息功能材料国家重点实验室唐述杰等研究人员,通过引入气态催化剂的方法,在国际上首次实现石墨烯单晶在六角氮化硼表面的高取向快速生长。3月11日,相关研究论文发表于《自然—通讯》。 该团队在前期掌握石墨烯形核控制、确定单晶和衬底的取向关系的基础上,以乙炔为碳源,创新性地引入硅烷作
深圳先进院高性能导热复合材料研究获系列进展
近期,中国科学院深圳先进技术研究院集成所先进材料中心研究员孙蓉团队在高性能导热复合材料研究中取得一系列进展。 现代电子器件逐渐向高度集成化和高功率化发展,如果器件内部产生的热量得不到有效地散发,将会引起热失效。为了保证电器器件的工作表现和寿命,有效的散热成为了制约电子产品发展的主要因素。解决散
深圳先进院高性能导热复合材料研究获系列进展
近期,中国科学院深圳先进技术研究院集成所先进材料中心研究员孙蓉团队在高性能导热复合材料研究中取得一系列进展。 现代电子器件逐渐向高度集成化和高功率化发展,如果器件内部产生的热量得不到有效地散发,将会引起热失效。为了保证电器器件的工作表现和寿命,有效的散热成为了制约电子产品发展的主要因素。解决散
化学所在气凝胶研究领域取得新进展
气凝胶是目前已知的密度最低的合成材料之一,因其极小的表观密度和热导率,高的孔隙率和比表面积,引起了广泛的关注。然而,气凝胶的多孔结构和极低密度导致其力学强度差;此外,常用的超临界干燥法制备程序繁杂、周期长、产量低、成本高, 制约了气凝胶的实际应用。 在国家科技部、国家自然科学基金委的大
新型纳米纤维气凝胶可有效吸收交通噪声
原文地址:http://news.sciencenet.cn/htmlnews/2022/3/474808.shtm 交通噪声一直被认为是最烦人的污染之一,对人类的生理和心理健康造成严重危害。近日,东华大学纺织科技创新中心印霞、斯阳、丁彬联合团队开发了一种分层结构的弹性陶瓷电纺纳米纤维气凝胶,可
基于气凝胶的超轻可编程“空气磁体”
近年来,航空航天事业的蓬勃发展,使越来越多的飞行器进入太空探索宇宙,甚至太空旅行计划使得普通人也可以完成自己的“太空梦”。但是高昂的发射成本一直阻碍着航空航天事业的发展,在目前的技术条件下,发射1克物体的成本约等价为1克黄金的价值。近日,北京航空航天大学的谢勇副教授、陈子瑜教授和科罗拉多大学的I