Antpedia LOGO WIKI资讯

NaturePlants:MAPK级联信号在侧根形成过程中的关键作用

侧根发生是初生根形成后植物根系建成的关键。侧根原基形成后必须要突破初生根的内皮层、皮层和表皮的重重外围组织,直至伸出初生根表面才能形成侧根,这一过程叫做侧根突破(Lateral root emergence, LRE)。侧根突破受到精细的区域性调控。简单来讲,侧根突破过程中,侧根原基外围细胞会发生细胞壁重塑使细胞分离,为侧根原基的生长和突破提供空间和出口。同时植物为了保证主根的完整性,不与侧根原基直接接触的其他外围细胞不会发生这一细胞分离过程。 浙江大学植物生物学研究所张舒群/徐娟课题组在Nature Plants(IF5=11.471)发表了题为“A MAPK cascade downstream of IDA-HAE/HSL2 ligand-receptor pair in lateral root emergence”的研究论文。该研究发现植物丝裂原活化蛋白激酶(Mitogen Activated Protein K......阅读全文

Nature Plants:MAPK级联信号在侧根形成过程中的关键作用

  侧根发生是初生根形成后植物根系建成的关键。侧根原基形成后必须要突破初生根的内皮层、皮层和表皮的重重外围组织,直至伸出初生根表面才能形成侧根,这一过程叫做侧根突破(Lateral root emergence, LRE)。侧根突破受到精细的区域性调控。简单来讲,侧根突破过程中,侧根原基外围细胞会发

MAPK信号通路研究工具

信号通路研究工具促细胞分裂原活化蛋白激酶(MAP kinase)是一类丝氨酸/苏氨酸蛋白激酶,由于不同的细胞外刺激或介导细胞表面至细胞核的信号转导而被激活。 结合其它信号途径,它们能够改变转录因子的磷酸化状态。受控的MAPK级联反应系统参与细胞增殖和分化,但当其活力失控时会导致肿瘤。据报道,三种主要

MAPK/Erk信号通路图

MAPK,丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)是细胞内的一类丝氨酸/苏氨酸蛋白激酶。研究证实,MAPKs信号转导通路存在于大多数细胞内,在将细胞外刺激信号转导至细胞及其核内,并引起细胞生物学反应(如细胞增殖、分化、转化及凋亡等)的过程中

1MAPK信号通路成员介绍

MAPK是信号从细胞表面传导到细胞核内部的重要传递者。已在哺乳动物细胞中鉴定了14种MKKK,7种MKK和12种MAPK。分析显示,这些激酶属于不同亚族。MKKKMKKK的4个亚族已得到鉴定,其中Raf亚族研究的最为透彻,包括B-Raf、A-Raf、Raf1。MEKK亚族由4种MEKK(MEKK1~

p38 MAPK信号通路图

p38 MAPK是1993年由Brewster等人在研究高渗环境对真菌的影响时发现的[8]。以后又发现它也存在于哺乳动物的细胞内,也是MAPKs的亚类之一,其性质与JNK相似,同属应激激活的蛋白激酶。目前已发现p38MAPK有5个异构体,分别为p38α(p38)、p38β1、p38β2、p38γ、p

Mapk-Erk信号通路研究背景

MAPK/ERK通路,也称为Ras-Raf-MEK-ERK通路,是细胞中的一条蛋白质链,将细胞表面受体的信号传递给细胞核中的DNA。该通路包括许多蛋白质,包括丝裂原活化蛋白激酶(MAPK,最初称为ERK),其通过向相邻蛋白质添加磷酸基团进行通信,磷酸基团充当“开”或“关”开关。MAPK是一个高度保守

P38MAPK信号转导通路

P38MAPK 信号转导通路分裂原激活的蛋白 激酶(mitogen activated protein kinases,MAPK)家族是非常保守的丝氨酸/苏氨酸蛋白激酶,是信号转导过程中一组主要的信号分子,在发育和疾病发生过程中起重要作用。该家族有4个成员,即细胞外信号调节激酶(extracellu

Ras2MAPK信号转导途径

Ras2MAPK信号转导途径Ras上游通路Ras能被复杂的网络激活.首先,被磷酸化激活的受体如PDGFR,EGFR直接结合生长因子受体结合蛋白(Grb2),这些受体也可以间接结合并磷酸化含有src同源区2(SH2)结构域的蛋白质(例如Shc,Syp)后,再激活Grb2.第二,Grb2的src同源区3

p38-MAPK信号通路研究背景

p38 MAP激酶(MAPK)参与控制细胞对细胞因子和应激反应的信号级联。哺乳动物中有四种p38 MAP激酶:p38-α(MAPK14)、-β(MAPK11)、-γ(MAPK12/ERK6)和-δ(MAPK13/SAPK4)。与SAPK/JNK途径类似,p38 MAP激酶被多种细胞应激激活,包括渗透

G蛋白偶联受体信号通路激活的MAPK/Erk信号通路图

研究证实,受体酪氨酸激酶、G蛋白偶联的受体和部分细胞因子受体均可激活ERK信号转导途径。如:生长因子与细胞膜上的特异受体结合,可使受体形成二聚体,二聚化的受体使其自身酪氨酸激酶被激活;受体上磷酸化的酪氨酸又与位于胞膜上的生长因子受体结合蛋白2(Grb2)的SH2结构域相结合,而Grb2的SH3结构域