CRISPRCas系统无需断链编辑基因

英国《自然》杂志6月12日在线发表的论文称,美国科学家团队开发出一种完全可编辑的CRISPR-Cas基因组编辑系统,其可以介导DNA精准插入基因组。该方法无需在靶DNA中产生双链断裂,避免了由此导致的遗传编码的非预期改变。 CRISPR-Cas系统又称“基因魔剪”,自问世以来迅速成为生物科学领域的游戏规则改变者。不过,传统的CRISPR-Cas基因组编辑系统,要利用一个向导RNA将细菌蛋白质靶向定位到需要改变的特定基因组位点。这种系统通过造成DNA的双链断裂来插入新的遗传信息。然而修复双链断裂所需的机制,有时候很容易出错,这几乎成为阻碍CRISPR-Cas技术发展的绊脚石。 此次,美国哥伦比亚大学科学家萨姆·斯登伯格及其同事证明,一种源自霍乱弧菌(Vibrio cholerae)的CRISPR-Cas系统,可以在不产生双链断裂的情况下实现DNA的插入。 研究人员发现,一种Tn7样转座子编码的蛋白质,能够利用向导RNA和......阅读全文

CRISPRCas系统无需断链编辑基因

  英国《自然》杂志6月12日在线发表的论文称,美国科学家团队开发出一种完全可编辑的CRISPR-Cas基因组编辑系统,其可以介导DNA精准插入基因组。该方法无需在靶DNA中产生双链断裂,避免了由此导致的遗传编码的非预期改变。  CRISPR-Cas系统又称“基因魔剪”,自问世以来迅速成为生物科学领

最先进的基因编辑工具CRISPRCas成CNS大热门

  今年1月,世界上有四个科研团队都对一种基因编辑工具——CRISPR-Cas系统进行了报告。越来越多的科学家开始对CRISPR-Cas系统进行研究。许多科研团队利用它来删除、添加、激活或抑制人体、老鼠、斑马鱼、细菌、果蝇、酵母、线虫和农作物细胞中的目标基因,从而证明了这个技术的广泛适用性。就在上个

基因编辑新进展:-关键酶消除CRISPRCas技术脱靶效应

  近来全球兴起的CRISPR-Cas编辑技术是基于细菌和古细菌天然防御机制的一项技术。与真核生物体内的RNA干扰过程极为相似,CRISPR-Cas 技术能够特异性切割核酸片段,不过该技术也有可能发生非特异性切割,引起基因组非靶向位点的突变,这一问题越来越受到科研人员的关注。   CRISPR

完美基因编辑:-新方法可消除CRISPRCas的脱靶效应

  前段时间,麻省理工的研究人员发现基因编辑工具CRISPR-Cas系统具有脱靶效应。近日,这个研究小组的负责人张峰教授表示,他们已经找到了影响CRISPR-Cas系统精确度的关键因素,这一发现将使该系统在人类细胞中的应用更安全。目前,这一研究发表在Nature Biotechnology上。

Mol-Cell:科学家开发出新型基因编辑技术—CRISPRCas

Mol Cell:科学家开发出新型基因编辑技术—CRISPR-Cas   经典的基因组编辑技术,即编辑已知的DNA序列,通过增加、删除基因来实现基因功能的激活或者抑制;该技术可应用于医学、生物技术、食品及农业等领域。近日,刊登在国际杂志Molecular Cell上的一篇研究论文中

遗传发育所利用CRISPRCas系统对植物进行定点基因组编辑

  CRISPR-Cas系统是继锌指核酸酶(ZFNs)和TALEN核酸酶之后的另一个可精确定点编辑基因组DNA的新技术,具有设计构建简单快速等优点。目前已在人类细胞系、斑马鱼、小鼠、果蝇和酵母等多个物种中利用,但CRISPR-Cas系统能否在植物中使用尚无报道。   中国科学院遗传与发育生物学研究

第三种可以编辑人类细胞基因组的CRISPRCas系统

  CRISPR-Cas系统为细菌和古菌抵抗外界病毒入侵的适应性免疫,基于此已开发出了两套基因编辑系统: CRISPR-Cas9和CRISPR-Cas12a(Cpf1)。它们能有效地编辑动植物的基因组,极大地推动了基因编辑相关领域的发展【1】。但Cas9系统存在脱靶效应、Cas9和Cas12a蛋白的

华中农大:利用I型及III型CRISPRCas系统实现基因组编辑

  CRISPR-Cas系统广泛存在于细菌和古细菌中,近年来科学家们针对它们的分子机制开展研究促使开发出了基于II型系统的一些基因编辑技术(延伸阅读:中科院Cell发表CRISPR-Cas研究新成果 )。然而,却未有研究报道利用I型及III型系统来实现基因组编辑。  来自华中农业大学的研究人员报告称

Science:有比CRISPRCas更安全的技术吗?基于retroelement的基因组编辑工具

  在一篇展望文章中,Stephen Tang和Samuel Sternberg讨论了基于retroelement的基因编辑作为CRISPR-Cas方法的一种更安全的替代方法。  精确的基因组编辑技术改变了现代生物学。可编程DNA靶向的能力已经迅速提高,这主要是由于细菌RNA引导的CRISPR-Ca

基因编辑技术可以编辑所有基因吗

即便当前不能,以后会能的。基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。在过去几年中, 以ZFN (zinc-finger nucleases)和TALEN (transcription activator-like effector nucleases)为代表

将CRISPRCas系统用于抗菌“基因疗法”

  CRISPR于1987年出现于日本,当时的研究人员报告称,他们在大肠杆菌基因组中发现了一种不寻常的结构,其中包含一系列重复片段,中间以独特的间隔序列隔开。后来的研究表明,间隔序列对应了感染细菌细胞的噬菌体的序列。在一些原核生物和古生物中,CRISPR和CRISPR相关蛋白(Cas)作为一种适应性

最新!农业与植物生物技术中CRISPRCas应用综述文章

  现代农业面临着诸多困境与挑战,现有的农作物栽培品种亟需改良与优化,以应对日益恶化的环境问题以及不断增长的世界人口。相比于传统育种,来自于原核生物的CRISPR-Cas系统可以准确、高效、可编程地对农作物基因组进行编辑,为未来农业发展提供新机遇。  中国科学院遗传与发育生物学研究所高彩霞研究组致力

中科院开发基于内源CRISPR系统植物病原菌基因组编辑方法

高效便捷的基因组操纵技术可推动病原菌致病机理的研究。水稻是世界上主要的粮食作物,由水稻白叶枯菌(Xanthomonas oryzae pv. oryzae,Xoo)引起的水稻白叶枯病是威胁水稻生产的主要病害之一。近日,中国科学院微生物研究所邱金龙团队利用水稻白叶枯菌内源CRISPR-Cas系统,建立

基因编辑细胞疗法

  17日,Sangamo Therapeutics公司宣布,欧洲药品管理局(EMA)孤儿药委员会(COMP)公布了详细资料,支持授予其在研体外基因编辑细胞疗法BIVV003孤儿药资格,治疗镰刀型细胞贫血病(SCD)。

基因编辑crispr原理

ZFNZFN,即锌指核糖核酸酶,由一个 DNA 识别域和一个非特异性核酸内切酶构成。DNA 识别域是由一系列 Cys2-His2锌指蛋白(zinc-fingers)串联组成(一般 3~4 个),每个锌指蛋白识别并结合一个特异的三联体碱基。锌指蛋白源自转录调控因子家族(transcription fa

基因编辑crispr原理

ZFNZFN,即锌指核糖核酸酶,由一个 DNA 识别域和一个非特异性核酸内切酶构成。DNA 识别域是由一系列 Cys2-His2锌指蛋白(zinc-fingers)串联组成(一般 3~4 个),每个锌指蛋白识别并结合一个特异的三联体碱基。锌指蛋白源自转录调控因子家族(transcription fa

基因编辑crispr原理

ZFNZFN,即锌指核糖核酸酶,由一个 DNA 识别域和一个非特异性核酸内切酶构成。DNA 识别域是由一系列 Cys2-His2锌指蛋白(zinc-fingers)串联组成(一般 3~4 个),每个锌指蛋白识别并结合一个特异的三联体碱基。锌指蛋白源自转录调控因子家族(transcription fa

基因编辑的好处

优点:由于基因技术在生物工程中的特殊作用,基因技术革命是继工业革命、信息革命之后对人类社会产生深远影响的一场革命。它在基因制药、基因诊断、基因治疗等技术方面所取得的革命性成果,将极大地改变人类生命和生活的面貌。同时,基因技术所带来的商业价值无可估量。从事此类技术研究和开发企业的发展前景无疑十分广阔。

什么是基因编辑

"公众对转基因担心的并不是基因技术,关键是转基因的“转”,现在通过基因测序研究已发展出基因编辑技术,可根据需要对原来的基因进行重新编辑,它可以不转任何新的基因,也能产生很好效果。中国今后将在进一步开展转基因研究的同时,积极推动基因编辑技术研究"。大妈连基因编辑都知道,真是厉害啊。既然提到这个,我就来

基因编辑专家亓磊:人类可以通过编辑基因根治癌症

  11月6日,2016年腾讯WE大会在北京北展剧场举行,腾讯公司首席探索官David Wallerstein、奇点大学联合创始人Peter Diamandis等人参加大会,并就航空、引力波、科技艺术、AR等前沿话题发表演讲。  基因编辑领域专家、斯坦福大学生物工程系和化学与系统生物学系助理教授亓磊

CRISPRCas系统引领药物发现途径和疾病治疗方案的革新

  CRISPR-Cas系统作为基因组编辑和调节的编程工具,可以在各种细胞中(包括人类细胞)进行遗传操作。虽然目前科学家们的注意力主要集中在CRISPR-Cas系统治疗孟德尔遗传疾病方面的潜力,但是该技术还有望为复杂的体细胞疾病提供新的治疗方法,同时CRISPR-Cas通过加速药物靶点的鉴定和验证,

新一代高性能基因编码的钙离子探针jGCaMP7系列

  CRISPR被称为“生物科学范畴的游戏规则改动者”,现已开展成为该范畴最炙手可热的研讨工具之一。不过,传统的CRISPR-Cas基因组编辑系统,要应用一个导游RNA将细菌蛋白质靶向定位到需求改动的特定基因组位点。6月12日,英国《自然》杂志在线发表的论文称,美国科学家团队开发出一种完整可编辑的C

Science子刊:用CRISPR攻克致命感染

  Whitehead研究所的研究人员改进了CRISPR-Cas基因组编辑系统,使其能够全面操纵白色念珠菌(Candida albicans)的基因组,这一技术将帮助人们找到更多的新治疗靶标。  “这项研究是很有意义的,”领导这项研究的Gerald Fink教授说。“之前我们对这种致病菌的攻击策略并

DNA碱基编辑:基因编辑工具“升级版”

  美国哈佛大学14日宣布,将授予光束疗法(Beam Therapeutics,下称BT)公司全球ZL许可,对可用于治疗人类疾病的一套革命性DNA碱基编辑技术进行开发和商业化。  BT公司同日宣布,已经筹集了高达8700万美元由F-Prime资本和ARCH风投牵头的A轮融资。BT公司由基因编辑技术领

DNA碱基编辑:基因编辑工具“升级版”

  美国哈佛大学14日宣布,将授予光束疗法(Beam Therapeutics,下称BT)公司全球ZL许可,对可用于治疗人类疾病的一套革命性DNA碱基编辑技术进行开发和商业化。   BT公司同日宣布,已经筹集了高达8700万美元由F-Prime资本和ARCH风投牵头的A轮融资。BT公司由基因编辑技

Nature:以彼之道,还施彼身!揭开病毒对抗细菌CRISPR免疫系统的全新方式

  噬菌体(Phage)和其他可移动遗传元件(MGE)对细菌施加了巨大的选择压力,作为回应,细菌也发展出了广泛的防御机制。其中最我们熟知的就是——CRISPR-Cas系统,这是一组在细菌中广泛存在的RNA引导的适应性免疫系统。  CRISPR-Cas系统的特异性和可编程性导致了基因组编辑、分子诊断等

中国科大CRISPRCas系统调控细菌基因组重塑研究获进展

  CRISPR-Cas(成簇的规律间隔的短回文重复序列及其相关蛋白质)系统是原核生物特有的一类适应性免疫系统,可以保护宿主不受外源核酸的入侵。目前关于CRISPR-Cas系统的研究主要集中在防御机制、被开发为基因编辑工具运用于原核和真核生物的基因组编辑等方面,而关于CRISPR-Cas系统对于宿主

中国科大研究组在CRISPRCas系统调控细菌基因组重塑...

  近日,中国科学技术大学生命学院及医学中心孙宝林研究组在CRISPR-Cas系统领域研究取得进展,在美国微生物学会知名期刊mSphere上发表题为《Chromosomal Targeting by the Type III-A CRISPR-Cas System Can Reshape Genom

基因的体外编辑介绍

由于体内的细胞发生变异,功能失调甚至癌变,一种简单的方法是“修复”体外的细胞,然后将其注入体内,以恢复最初受损的功能。最典型的例子是近年来流行的CAR-T技术(在体外用病毒转染T细胞,使其能够识别肿瘤表面的某些蛋白质),以及在体外编辑干细胞。这种方法的优点是可以管理的。毕竟,编辑是在身体之外进行的。

如何看待基因编辑技术

基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。