国内高端光通信芯片如何突出“重围”?

国内高端光通信芯片如何突出“重围”?光信息与光网络已经成为国家重要的信息基础设施,奠定了智慧城市的发展基础,也支撑着下一代互联网、移动互联网、物联网、云计算和大数据等战略性新兴产业的发展,同时,在智慧安防、智慧医疗、智慧交通,智慧物业、智慧家居、信息消费等众多领域,都有光信息技术的重要应用。光通信芯片作为整个光信息与光网络的核心环节,将成为人们更加关注的焦点。作为专注国内外产学研的优质服务平台,由中国光学工程学会联合国内相关机构组织的第十一届光电子·中国博览会暨“2019第三届光信息与光网络大会”将于8月5日-7日在北京国家会议中心盛大召开,为国内光芯片制造商搭建解决方案与产品市场拓展的一站式服务平台。 巨头企业进军布局光芯片市场 光通信芯片是一种高度集成的元器件,是实现电信号和光信号之间的相互转换的关键。5G给光通信芯片市场带来了巨大机遇,随着行业景气度的上升,国内的通讯企业也在加大布局芯片研发,纷纷出台战略计划开展......阅读全文

什么是光通信?

光通信就是以光波为载波的通信。

激光通信的作用

激光通信是一种利用激光传输信息的通信方式。激光是一种新型光源,具有亮度高、方向性强、单色性好、相干性强等特征。按传输媒质的不同,可分为大气激光通信和光纤通信。大气激光通信是利用大气作为传输媒质的激光通信。光纤通信是利用光纤传输光信号的通信方式。

激光通信的优点

(1)通信容量大。在理论上,激光通信可同时传送1000万路电视节目和100亿路电话。(2)保密性强。激光不仅方向性特强,而且可采用不可见光,因而不易被敌方所截获,保密性能好。(3)结构轻便,设备经济。由于激光束发散角小,方向性好,激光通信所需的发射天线和接收天线都可做的很小,一般天线直径为几十厘米,

激光通信的应用

激光通信的应用主要有以下几个方面:1、地面间短距离通信;2、短距离内传送传真和电视;3、由于激光通信容量大,可作导弹靶场的数据传输和地面间的多路通信。4、通过卫星全反射的全球通信和星际通信,以及水下潜艇间的通信。

激光通信的技术特点

激光通信是一种利用激光传输信息的通信方式。激光是一种新型光源,具有亮度高、方向性强、单色性好、相干性强等特征。按传输媒质的不同,可分为大气激光通信和光纤通信。大气激光通信是利用大气作为传输媒质的激光通信。光纤通信是利用光纤传输光信号的通信方式。

激光通信的技术缺陷

(1)通信距离限于视距(数公里至数十公里范围),易受气候影响,在恶劣气候条件下甚至会造成通信中断。大气中的氧、氮、二氧化碳、水蒸汽等大气分子对光信号有吸收作用;大气分子密度的不均匀和悬浮在大气中的尘埃、烟、冰晶、盐粒子、微生物和微小水滴等对光信号有散射作用。云、雨、雾、雪等使激光受到严重衰减。地球表

激光通信的技术缺陷

(1)通信距离限于视距(数公里至数十公里范围),易受气候影响,在恶劣气候条件下甚至会造成通信中断。大气中的氧、氮、二氧化碳、水蒸汽等大气分子对光信号有吸收作用;大气分子密度的不均匀和悬浮在大气中的尘埃、烟、冰晶、盐粒子、微生物和微小水滴等对光信号有散射作用。云、雨、雾、雪等使激光受到严重衰减。地球表

激光通信系统组成特点

激光通信系统组成设备包括发送和接收两个部分。发送部分主要有激光器、光调制器和光学发射天线。接收部分主要包括光学接收天线、光学滤波器、光探测器。要传送的信息送到与激光器相连的光调制器中,光调制器将信息调制在激光上,通过光学发射天线发送出去。在接收端,光学接收天线将激光信号接收下来,送至光探测器,光探测

激光通信的系统组成

激光通信系统组成设备包括发送和接收两个部分。发送部分主要有激光器、光调制器和光学发射天线。接收部分主要包括光学接收天线、光学滤波器、光探测器。要传送的信息送到与激光器相连的光调制器中,光调制器将信息调制在激光上,通过光学发射天线发送出去。在接收端,光学接收天线将激光信号接收下来,送至光探测器,光探测

光通信的定义和方式

 光通信就是以光波为载波的通信。增加光路带宽的方法有两种:一是提高光纤的单信道传输速率;二是增加单光纤中传输的波长数,即波分复用技术(WDM)事实上,光通信设备只适合在最后几公里的距离用。

激光通信的技术优势

大气激光通信可传输语言、文字、数据、图像等信息。激光通信的优点是:(1)通信容量大。在理论上,激光通信可同时传送1000万路电视节目和100亿路电话。(2)保密性强。激光不仅方向性特强,而且可采用不可见光,因而不易被敌方所截获,保密性能好。(3)结构轻便,设备经济。由于激光束发散角小,方向性好,激光

什么是相干光通信?(一)

☑  为什么在骨干网,长距传输上选择了相干光通信?☑  了解相干光通信之前所需的知识储备☑  QPSK,QAM等复杂调制格式具体实现的方式 在光通信行业里,我们经常听到400G和100G传输,而相干光通信和PAM4传输技术在数据中心及网络基础设施中是当下实现这两种速率的主要技术方向。按照这两种技术各

什么是相干光通信?(二)

I/Q调制在下图用极坐标描述,这里,I为in-phase同相或实部,Q为quadrature正交相位或虚部,如图(6)所示蓝色矢量端点的位置对应一个点 (也称为“星座点”)在这个图中(这被称为“星座图”),这个点其实就是振幅E和相位Ф的一对组合。 图(6)   I/Q调制听起来有个蛮高大上的名字,那

光通信技术的发展现状

 对光通信来说,其技术基本成熟,而业务需求相对不足。以被誉为“宽带接入最终目标”的FTTH为例,其实现技术EPON已经完全成熟,但由于普通用户上网需要的带宽不高,使FTTH的商用只限于一些试点地区。但是,在2006年,随着IPTV等三重播放业务开展,运营商提供的带宽已经不能满足用户对高清晰电视的要求

激光通信的应用领域介绍

激光通信的应用主要有以下几个方面:1、地面间短距离通信;2、短距离内传送传真和电视;3、由于激光通信容量大,可作导弹靶场的数据传输和地面间的多路通信。4、通过卫星全反射的全球通信和星际通信,以及水下潜艇间的通信。

石墨烯芯片光通信技术取得突破

  爱迪生在发明灯泡时,最初是使用碳作为灯丝,一个由美国哥伦比亚大学、韩国首尔国立大学和韩国标准科学研究院研究人员组成的国际团队又回到同一种元素,他们首次展示了用只有一个碳原子厚度的石墨烯作为灯丝的可见光源:细条状石墨烯灯丝与金属电极相连,悬挂在基底上方,当电流通过时灯丝就会受热发光。这项研究发表在

光通信——光分路器技术指标

   3x3光分路器(一次成型)   ● 高可靠性   ● 较好一致性   ● 低损耗   ● 低偏振敏感    选购光分路器的常用技术指标   :    (1) 插入损耗。    光分路器的插入损耗是指每一路输出相对于输入光损失的dB数,其数学表达式为:Ai=-10lg Pouti

国内高端光通信芯片如何突出“重围”?

国内高端光通信芯片如何突出“重围”?光信息与光网络已经成为国家重要的信息基础设施,奠定了智慧城市的发展基础,也支撑着下一代互联网、移动互联网、物联网、云计算和大数据等战略性新兴产业的发展,同时,在智慧安防、智慧医疗、智慧交通,智慧物业、智慧家居、信息消费等众多领域,都有光信息技术的重要应用。光通信芯

解析激光通信的优点与缺点

  激光本身具有亮度高、方向性强、单色性好、相干性强等特征,除了语言信息语言,它还能传输文字、数据、图像等信息。  激光通信的优点  1.通信容量大。在理论上,激光通信可同时传送1000万路电视节目和100亿路电话。  2.保密性强。激光不仅方向性特强,而且可采用不可见光,因而不易被敌方所截

激光通信试验遥感卫星发射成功

5月31日,谷神星一号(遥十二)运载火箭在我国酒泉卫星发射中心发射升空,将极光星座01星(复旦信息星)、02星(上海电机学院一号)激光通信试验遥感卫星顺利送入预定轨道,发射任务获得圆满成功。发射现场 极光星通供图据悉,极光星座01星、02星由北京极光星通科技有限公司(以下简称极光星通)联合中国航天科

光通信中准直器的在线“调焦”方法

光通信中准直器的在线“调焦”方法          --- 基于CINOGY相机式光束分析仪 方法介绍目前,在光通信市场中,准直器的在线“调焦”方法主要有两种:1. 传统的反射镜调试方法(借助功率计,反射镜等)2. 基于光束分析仪的调试方法(主要有狭缝式和相机式两种光束分析仪),以及基于相机式光束分

NASA将展示来自空间站的激光通信

原文地址:http://news.sciencenet.cn/htmlnews/2023/9/507809.shtm

我国创光通信单波超长距离新纪录

  近日,武汉邮电科学研究院、光纤通信技术和网络国家重点实验室及烽火通信公司在北京宣布完成“单光源1-Tbit/s LDPC码相干光OFDM 1040公里传输技术与系统实验”。经过测试和工信部鉴定,专家组一致认为该项目成果填补了国内空白,达到国际领先水平。   该项目意义在于,通过提高单波比特速率

中美合作高速光通信实验室成立

  日前,由北京邮电大学和美国知名光纤通信测试解决方案提供商捷迪讯公司共同建设的光网络测试实验室正式成立。捷迪讯向北邮共享了一批先进的高速光通信测试仪器和系列解决方案,对于我国光通信研究和人才培养具有重要意义。  测试环节是我国通信产业链的传统弱项。一方面,北邮正在攻关高速(100G/bp

实践十三号:卫星激光通信技术全球领先

  1月23日,我国首颗高通量通信卫星实践十三号在轨交付,正式投入使用。实践十三号卫星投入使用后,将纳入“中星”卫星系列,命名为“中星十六号”卫星。实践十三号卫星在轨示意图。  实践十三号卫星是我国自主研发的新一代高轨技术试验卫星,于2017年4月12日在西昌成功发射。在轨测试期间,它圆满完成了高效

美国研究团队开发出硅基芯片上光通信技术

  美国麻省理工学院发布消息称,该校一个研究团队开发出一种新材料,可集成在硅基芯片上进行光通信,从而比导线信号传输具有更高的速度和更低的能耗。该成果发布在最新出版的《自然·纳米技术》期刊上。   这种新材料为二碲化钼,是近年来引人关注的二维过渡金属硫化物的一种。这种超薄结构的半导体可以集成在硅基芯片

用噪声保密-我研究成果可使光通信“抗劫持”

  在5月19日开幕的2018年全国科技活动周暨北京科技周活动主场上,北京邮电大学信息光子学与光通信国家重点实验室张杰教授带领的光信息安全研究团队展示了一项最新成果——内生安全光通信,使不依赖附加密钥的大容量安全传输成为可能。  在传统光通信中,信息由于透明传递而随时存在被“劫持”的安全隐患,因此收

原子荧光通信失败的原因和解决方法

原子荧光通信失败的原因和解决方法 通讯失败的原因有以下几种可能: (1)、主机电源开关未打开 (2)、开机顺序不对 (3)、主机电路不正常 (4)、通讯接口(RS232电缆及插头)有问题 (5)、软件有问题 可以通过以下方法解决: (1)、打开电源开关 (2)、重新复位,即按顺序重新开启微机、主机

西安光机所超高速空间光通信技术研究获进展

  近日,中国科学院西安光学精密机械研究所在超高速空间光通信技术研究中取得重要进展。相关研究成果以Terabit FSO communication based on a soliton microcomb为题,作为封面文章,发表在Photonics Research上。  自由空间激光通信(FSO

西安光机所实现1公里超高速空间光通信技术

《光子学研究》(Photonics Research)2022年第12期封面文章发表。 基于微腔孤子光频梳的大规模并行自由空间光通信系统。图片均由论文作者提供 自由空间激光通信(FSOC)是一种利用激光束作为载波在空间进行信息传递的通信方式,相比于微波通信,其具有传输速率高、抗电磁干扰