insituTEM技术实现观察镁合金样品中的锥面位错滑移
近日,重庆大学材料科学与工程学院教授、电子显微镜中心主任聂建峰与西安交通大学单智伟教授和美国内华达大学雷诺分校李斌教授合作,在国际顶级学术期刊Science发表题为“Large plasticity in magnesium mediated by pyramidal dislocations”的研究论文,聂建峰教授为共同通讯作者,重庆大学为通讯单位,这是重庆大学首次作为通讯单位在Science发表论文。 作为最轻的金属结构材料,镁及其合金在交通运输中的应用能大幅度减轻重量,从而达到节能减排的目的。然而,镁的低塑性是限制其大规模应用的主要因素之一。镁的塑性与锥面位错的行为直接相关,因为该位错是协调具有密排六方结构的镁晶体c轴变形的一种主要方式。但是,人们对锥面位错的行为还存在争议。近期的权威报道通常认为锥面位错易于转变成不可滑动的结构而失去了对塑性的贡献。该工作利用原位透射电镜力学测试,直接观察到位错在{101}和{11}......阅读全文
透射电镜成像原理
透射电镜构造原理透射电镜一般是电子光学系统、真空系统和电源与控制系统三大部分组成。电子光学系统通常称为镜筒,是透射电子显微镜的核心,它又可以分为照明系统、成像系统和观察记录系统。下图是电镜电子光学系统的示意图,其中左边是电镜的剖面图,右边是电镜的示意图和光学显微镜的示意图对比。由图中可以看出,电镜中
透射电镜的历史
恩斯特·阿贝最开始指出,对物体细节的分辨率受到用于成像的光波波长的限制,因此使用光学显微镜仅能对微米级的结构进行放大观察。通过使用由奥古斯特·柯勒和莫里茨·冯·罗尔研制的紫外光显微镜,可以将极限分辨率提升约一倍。然而,由于常用的玻璃会吸收紫外线,这种方法需要更昂贵的石英光学元件。当时人们认为由于
透射电镜简单分类
透射电镜根据产生电子的方式不同可以分为热电子发射型和场发射型。热电子发射型用的灯丝主要有钨灯丝和六硼化镧灯丝;场发射型有热场发射和冷场发射之分。根据物镜极靴的不同可以分为高倾转、高衬度、高分辨和超高分辨型。
透射电镜快速入门
在一些实验中,需要观察在普通的光学显微镜中无法看清的细微结构,那么就需要透射电子显微镜,透射电子显微镜是以波长更短的光源去提高显微镜的分辨率,以便更好的观察。那么透射电镜到底是怎么实现的呢? 关于透射电子显微镜 简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子
透射电镜的使用
对于一名生物医学工作者来说,是我们当今进行理论及临床研究中不可缺少的重要工具。为了充分发挥它的功效,必须学会正确使用。使用除了掌握必要的电镜基本知识以外,在工作中还应注意下列环节。1.保证透射电镜各部分的对中。所谓对中的标准就是要做到:(一)当放大倍数改变时,视场的中心不会丢失,(二)当改变物样上的
透射电镜成像原理
透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨率、高放大倍数的电子光学仪器。透射电子显微镜是把经加速和聚集的电子束投射到非常薄的样品上(片状< 100 nm,颗粒< 2 um),电子与样品中的原子碰撞而改变方向,从而产生立体角散射。图片的明暗不同(黑白灰)与样品的原子序
透射电镜成像原理
透射电镜构造原理透射电镜一般是电子光学系统、真空系统和电源与控制系统三大部分组成。电子光学系统通常称为镜筒,是透射电子显微镜的核心,它又可以分为照明系统、成像系统和观察记录系统。下图是电镜电子光学系统的示意图,其中左边是电镜的剖面图,右边是电镜的示意图和光学显微镜的示意图对比。由图中可以看出,电镜中
透射电镜样品制备
透射电镜样品制备 一、样品要求 1.粉末样品基本要求 (1)单颗粉末尺寸最好小于1μm; (2)无磁性; (3)以无机成分为主,否则会造成电镜严重的污染,甚至掉高压; 2.块状样品基本要求 (1)需要双喷减薄或离子减薄,获得几十纳米的薄区才能观察; (2)如晶粒尺寸小于1μm,也
低压透射电镜简介
低压透射电镜 低压小型透射电镜(Low-Voltage electron microscope, LVEM)采用的电子束加速电压(5kV)远低于大型透射电镜。较低的加速电压会增强电子束与样品的作用强度,从而使图像衬度、对比度提升,尤其适合高分子、生物等样品;同时,低压透射电镜对样品的损坏较小。
透射电镜成像原理
透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨率、高放大倍数的电子光学仪器。透射电子显微镜是把经加速和聚集的电子束投射到非常薄的样品上(片状< 100 nm,颗粒< 2 um),电子与样品中的原子碰撞而改变方向,从而产生立体角散射。图片的明暗不同(黑白灰)与样品的原子序
透射电镜成像原理
透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨率、高放大倍数的电子光学仪器。透射电子显微镜是把经加速和聚集的电子束投射到非常薄的样品上(片状< 100 nm,颗粒< 2 um),电子与样品中的原子碰撞而改变方向,从而产生立体角散射。图片的明暗不同(黑白灰)与样品的原子序
透射电镜成像原理
透射电镜构造原理透射电镜一般是电子光学系统、真空系统和电源与控制系统三大部分组成。电子光学系统通常称为镜筒,是透射电子显微镜的核心,它又可以分为照明系统、成像系统和观察记录系统。下图是电镜电子光学系统的示意图,其中左边是电镜的剖面图,右边是电镜的示意图和光学显微镜的示意图对比。由图中可以看出,电镜中
透射电镜成像原理
透射电镜构造原理透射电镜一般是电子光学系统、真空系统和电源与控制系统三大部分组成。电子光学系统通常称为镜筒,是透射电子显微镜的核心,它又可以分为照明系统、成像系统和观察记录系统。下图是电镜电子光学系统的示意图,其中左边是电镜的剖面图,右边是电镜的示意图和光学显微镜的示意图对比。由图中可以看出,电镜中
透射电镜成像原理
透射电镜构造原理透射电镜一般是电子光学系统、真空系统和电源与控制系统三大部分组成。电子光学系统通常称为镜筒,是透射电子显微镜的核心,它又可以分为照明系统、成像系统和观察记录系统。下图是电镜电子光学系统的示意图,其中左边是电镜的剖面图,右边是电镜的示意图和光学显微镜的示意图对比。由图中可以看出,电镜中
透射电镜的介绍
透射电镜,即透射电子显微镜是电子显微镜的一种。电子显微镜是一种高精密度的电子光学仪器,它具有较高分辨本领和放大倍数,是观察和研究物质微观结构的重要工具。 电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。电子显微镜的分辨能力以它
透射电镜的应用
透射电镜具有分辨率高、可与能谱仪等其他技术联用的优点,在物理、化学、生物学和材料学等多个领域有着广泛地应用。材料的微观结构对材料的力学、光学、电学等物理化学性质起着决定性作用。透射电镜作为材料表征的重要手段,不仅可以用衍射模式来研究晶体的结构,还可以在成像模式下得到实空间的高分辨像,即对材料中的
扫描透射电镜(STEM)
扫描透射电镜(STEM) 成像方式与扫描电镜相似,不过接收的不是次级电子而是透射电子(包括部分小角散射电子)。样品也必须是薄膜,STEM的分辨本领与电子束斑直径相当。专门的STEM用高亮度场致发射电子枪(要求10-10托的超高真空)。分辨本领能达3 ? 。利用这种STEM已观察到轻元素支持膜上的
透射电镜市场概况
透射电镜市场概况2020年至2024年全球透射电子显微镜(TEM)市场规模预计将增长3.597亿美元,复合年增长率接近10%。2020年的同比增长为8.31%,2020年预计为3.509亿美元。亚太地区将贡献63%的市场份额。但随着COVID-19业务影响的扩散,预计2020-2024年全球透射电子
我国科学家引领材料素化科学前沿研究
材料可持续发展受到世界各国高度重视,主要发达国家纷纷启动材料可持续发展研究计划。材料素化是沈阳材料科学国家研究中心卢柯研究员近年来在对材料科技发展趋势的综合研究分析下提出的新概念,旨在通过跨尺度材料组织结构调控提升材料性能,替代合金化,减少合金元素的使用,促进材料回收和再利用,为人类解决材料可持
卢柯研究团队在材料素化科学前沿取得重要进展
材料可持续发展受到世界各国高度重视,主要发达国家纷纷启动材料可持续发展研究计划。材料素化是沈阳材料科学国家研究中心卢柯研究员近年来在对材料科技发展趋势的综合研究分析下提出的新概念,旨在通过跨尺度材料组织结构调控提升材料性能,替代合金化,减少合金元素的使用,促进材料回收和再利用,为人类解决材料可持
《科学》(20240726出版)一周论文导读
编译|李言Science, 26 JUL 2024, Volume 385 Issue 6707《科学》2024年7月26日,第385卷,6707期量子计算Quantum ComputingOperating semiconductor quantum processors with hopping
Nature-Commun.:-揭示纳米孪晶变形机制转变的临界尺度规律
多尺度纳米孪晶的独特性 多尺度纳米孪晶结构与传统粗晶和纳米晶金属的变形行为截然不同,表现出异乎寻常的独特性能,如更高的强度/延展性、更好的耐疲劳等特性。因此,不同尺度纳米孪晶的变形机制引起材料科学家的广泛关注。目前没有直接的证据说明,当孪晶片层厚度减小到几纳米时,现有的位错滑移增强增韧机理是否
金属所在金属中纳米孔弥散强化研究方面获进展
发展新型轻质高强度材料是航空航天、汽车、消费电子等领域的迫切需求。当前,材料轻量化一般通过添加更轻的合金元素如轻质钢中的铝、铝合金中的锂来实现。与之相比,引入孔洞是更为直观有效且更具普适性的材料减重途径。然而,一般情况下,少量孔洞即可导致材料的强度、塑韧性、疲劳性能等力学性能急剧降低。因此,在铸造、
《Science》VS《Science》:造假or结论不可靠?
Byrareddy等人报道 [Science 354,197(2016)],在抗逆转录病毒疗法(ART)治疗期间和之后用抗整联蛋白α4β7的抗体治疗猿猴免疫缺陷病毒(SIV)阳性猕猴,之后在停止ART治疗后,可以持续的进行病毒学控制。 然而,这一次有3篇Science 背靠背发表,表明α4β7
透射电子显微镜
透射电子显微镜,简称透射电镜,英文名为Transmission Electron Microscope,缩写为TEM,是一种利用高速运动的电子束作为光源,穿透固体样品,再经过电磁透镜成像的显微镜。透射电镜由电子光学系统、观察记录系统、真空和冷却系统以及电源系统等组成。电子光学系统又可分为照明系统和成
我国学者在片层材料断裂行为研究方面取得进展
图1 片层界面主导断裂行为及RT判据 在国家自然科学基金项目(92163215、51731006、51771093、91860104)资助下,南京理工大学陈光教授研究团队在轻质耐热聚片孪生TiAl单晶高性能材料断裂行为研究方面取得重要进展。研究成果以“片层界面主导断裂行为(Interlamella
金属所面心立方金属层错能效应研究取得进展
随着现代工业的迅速发展,工业界对于具有高强度、高塑性、高疲劳性能的金属材料具有重要的需求。中国科学院金属研究所材料疲劳与断裂实验室以Cu和Cu合金(Cu-Al,Cu-Zn等)模型材料为研究对象,经过近十年的研究探索,系统地揭示了层错能对微观结构、拉伸性能、强韧化机制以及疲劳行为等方面的影响规律,
高熵合金既强又韧的关键“基因”获突破!浙大再发Nature
高熵合金(HEA)是合金家族近年来出现的新成员,因其独特而优越的性能而广受科学界关注。自它诞生之日起,一个问题就始终伴随左右:高熵合金的本质是什么?最新的科学研究发现,与传统合金相比,高熵合金内部的各元素分布存在明显的浓度起伏,这对它的高强塑性起到了决定性作用。 在相关论文Tuning ele
出口位
中文名称出口位英文名称exit site;E site定 义特指核糖体中空载的、不携带氨基酸的转移核糖核酸离开核糖体的部位。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)
北京大学7月份免费仪器分析课开讲-从观察微观世界开始
分析测试百科网讯 2016年7月5日,北京大学7月份免费仪器分析课开讲,7月已经安排的课程有7月5日《电镜原理及分析测试技术》和7月8日《质谱原理及分析测试技术》,由北京大学老师为大家讲解分析测试仪器,参与者还有机会近距离现场观察大型分析仪器设备。北京大学7月份免费仪器分析课《电镜原理