Antpedia LOGO WIKI资讯

AFM探针制备石墨烯纳米气泡及其三轴对称的赝磁场

7月16日,中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室于Nature Communications在线发表了题为“程序化制备石墨烯纳米气泡及其三轴对称的赝磁场”的论文(Nature Communications, 10, 3127 (2019))。该研究提出了一种利用原子力显微镜探针可控制备石墨烯纳米气泡的方法,并实验证实了抛物线型气泡上存在具有三轴对称性的赝磁场。 石墨烯纳米气泡由于其特殊的应变结构,可以在垂直方向产生几十乃至上百特斯拉大小的赝磁场,因此能够应用于谷电子学器件制备及Aharonov-Bohm效应的探测,但是常规石墨烯气泡的制备很难控制气泡的大小、位置以及形状。上海微系统所研究人员创造性地提出利用导电原子力显微镜探针对H钝化Ge表面石墨烯施加偏置电压,可以使Ge-H键断裂,随后分离出的H原子会结合形成H2分子,让上方覆盖的石墨烯鼓起来,从而形成石墨烯纳米气泡。通过控制施加偏置电压,可以控......阅读全文

AFM探针制备石墨烯纳米气泡及其三轴对称的赝磁场

  7月16日,中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室于Nature Communications在线发表了题为“程序化制备石墨烯纳米气泡及其三轴对称的赝磁场”的论文(Nature Communications, 10, 3127 (2019))。该研究提出了一种利用原子力显

AFM表征石墨烯原理

AFM可用于了解石墨烯细微的形貌和确切的厚度信息,属于扫描探针显微镜,它利用针尖和样品之间的相互作用力传感到微悬臂上,进而由激光反射系统检测悬臂弯曲形变,这样就间接测量了针尖样品间的作用力从而反映出样品表面形貌。因此,表征方法主要表征片层的厚度、表面起伏和台阶等形貌,及层间高度差测量。原子力显微技术

石墨烯AFM测试详解

单层石墨烯的厚度为0.335nm,在垂直方向上有约1nm的起伏,且不同工艺制备的石墨烯在形貌上差异较大,层数和结构也有所不同,但无论通过哪种方法得到的最终产物都或多或少混有多层石墨烯片,这会对单层石墨烯的识别产生干扰,如何有效地鉴定石墨烯的层数和结构是获得高质量石墨烯的关键步骤之一。本文材料+小编将

AFM表征石墨烯的优缺点

由于单层石墨烯理论厚度很小,在扫描电镜中很难观察到。原子力显微镜是表征石墨烯片层结构的最有力、最直接有效的工具。它可以清晰的反映出石墨烯的横向尺寸、面积和厚度等方面的信息,但一般只能用来分辨单层或双层的石墨烯。原子力显微镜可以表征单层石墨烯,但也存在缺点:耗时且在表征过程中容易损坏样品;此外,由于C

AES、STM、AFM的区别

AES、STM、AFM的区别主要是名称不同、工作原理不同、作用不同、一、名称不同1、AES,英文全称:Auger Electron Spectroscopy,中文称:俄歇电子能谱2、STM,英文全称: Scanning Tunneling Microscope,中文称:扫描隧道显微镜3、AFM,英文

导电型原子力显微镜的研制和应用研究

     扫描隧道显微镜只能测量导电的样品,原子力显微镜对样品是否导电没有特殊要求,但是无法测量样品导电性。在实际应用中,更多的研究对象是导电质与非导电质的混合物。特别是近年来人们感兴趣的金属有机复合材料、纳米颗粒镶嵌材料、纳米电子学等方面,都涉及到局域导电性及非导电性等问题。    鉴于STM和A

石墨烯纳米带电触头技术最新研究成果

  6月13日,来自荷兰Aalto大学的一项研究称,科学家们成功展示了如何利用单个化学键在石墨烯纳米带上建立电触头。石墨烯是一种蜂窝晶格状排列的碳原子单层物质材料,近年来被科学家们看好其在电子领域的无限前景。   室温下工作的石墨烯晶体管需要小于10纳米尺寸的工作条件,这就意味着石墨烯纳米结构需满

双极性氧化还原电对提高石墨烯基微型超级电容器赝电容

  近日,我所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队与纳米与界面催化研究组(502组)傅强研究员团队合作,在高浓度ZnCl2电解液中加入具有双极性氧化还原电对的ZnI2电解质,实现在石墨烯正负极同时引入赝电容,构筑出高容量、长循环水系石墨烯基微型超

stm和afm比较有什么差别

  扫描隧道显微镜的基本原理是将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近(通常小于1nm)时,在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。  利用扫描隧道显微镜可直接观测材料表面原子是否具有周期性的表面结构特征,表面的重构和结构缺陷等。  原子力

AFM和STM有什么不同呢?

       扫描隧道显微镜STM(scanning tunneling microscopy, STM) 于1982 年, 由IBM 瑞士苏黎世实验室的科学家Binning 等发明。STM的原理是利用针尖和样品之间的隧道电流对样品表面进行表征。所以理论上它只适用于导电样品,因而限制了其应用范围。但