蛋白芯片制作与应用(4)-液态芯片
液态芯片原理编码微球:分别用不同配比的两种荧光染料将直径5.6μm的聚苯乙烯微球(Beads)染成不同的荧光色,从而获得多达100种经荧光编码的微球。 交联探针、抗体或抗原:把针对不同检测物的核酸探针、抗体或抗原以共价方式结合到特定荧光编码的微球上。 检测反应:先把针对不同检测物的、用不同荧光色编码的微球混合,再加入被检测物(可以是血清中的抗原、抗体或酶等,也可以是PCR产物)。 悬液中的微球与被检测物特异性结合,结合物被标记上荧光物质。激光分析:微球成单列通过两束激光,一束判定微球的荧光编码;另一束测定微球上的报告分子的荧光强度。 1)液态芯片目前仍然处于基础研究方面,虽然已经有部分临床研究,但可能离大规模应用还有一段距离。2)常见的应用如肿瘤、内分泌、自身免疫等的检测,也有人将其用于细胞因子谱判断。3)下面是一些液态芯片相关经典的文献,有时间参考一下1. Hany Ezze......阅读全文
表达谱芯片的介绍与应用
基因表达谱芯片可使是科研工作者实现在MRNA水平上同时平行研究成百上千乃至上万条基因的表达关系。 它与传统的研究基因表达的方法(如差异cDNA文库筛选、Northern blot和PCR)相比较,可为使用者节省大量的研究经费和时间并获得范围更广、更具有关联性的研究结果。它的主要用途是用于大规
表达谱芯片的介绍与应用
基因表达谱芯片可使是科研工作者实现在MRNA水平上同时平行研究成百上千乃至上万条基因的表达关系。 它与传统的研究基因表达的方法(如差异cDNA文库筛选、Northern blot和PCR)相比较,可为使用者节省大量的研究经费和时间并获得范围更广、更具有关联性的研究结果。它的主要用途是用于大规模分
基因芯片的应用与展望
一、基因芯片产生背景人类基因组计划(HGP)是人类为了认识自己而进行的一项最伟大和最具影响的研究计划。 人类基因组测序的“工作草图”即将向全球公布,预计在2003年完成全序列分析。此外,还测定了80万个cDNA片断(ESTs),相当于4-5万个基因,占7-10万个人类总基因的50%左右。目前
DNA芯片技术的原理与应用
DNA芯片技术就是指在固相支持物上原位合成寡核苷酸或者直接将大量的DNA探针以显微打印的方式有序地固化于支持物表面,然后与标记的样品杂交,通过对杂交信号的检测分析,即可获得样品的遗传信息。是伴随“人类基因组计划”的研究进展而快速发展起来的一门高新技术。通俗地说,基因芯片是通过微加工技术,将数以万计、
SELDI蛋白芯片技术在肿瘤早期诊断中研究进展(三)
SELDI蛋白芯片技术可有效筛选血清中特异性蛋白标志物,为建立卵巢癌的诊断模型提供可靠的技术平台。 2.4 乳腺癌 CA153用于乳腺癌的检测,其灵敏度23%,特异性69%,只能用于监测治疗效果和复发情况。LI等[23]对169例血清进行检测,其中乳腺
SELDI蛋白芯片技术在肿瘤早期诊断中研究进展(一)
作者:余家密 【摘要】 SELDI蛋白芯片技术全称为表面增强激光解吸电离飞行时间质谱技术(SELDI-TOF-MS)是近年用来研究蛋白质组学的一项新的技术平台,具有高通量、高效率、高灵敏度等特点,可以快速地分析各种生物样品中蛋白质组的组成,在基础医学研究、临床疾病诊断以及药物研发方面
SELDI蛋白芯片技术在肿瘤早期诊断中研究进展(二)
2.1 肝 癌 肝癌是非洲、中国和东南亚国家最常见的恶性肿瘤之一,其生存率低,很大一部分是由于诊断时病程已到了进展期,失去了很好的治疗机会[6]。目前肝癌的早期诊断主要依靠血清AFP的检测,但近年来大量临床研究表明,AFP阳性率波动在60%~70%[7],约有1/
组织芯片制作仪分类和选购技巧
组织芯片制作仪,也叫阵列仪、点样仪。通过简单的操作将几百件组织样本进行精确的微阵列,以实现单个石蜡块包含数以百计的组织样本,大大提高生物学信息通量,并有效防止了系统实验误差,这在分子诊断/预后指标筛选/治疗靶点定位/抗体和药物筛选/基因和蛋白表达分析等领域意义重大。 组织芯片仪是制作组织芯片的必须工
组织芯片制作仪分类和选择技巧
组织芯片制作仪,也叫阵列仪、点样仪。通过简单的操作将几百件组织样本进行精确的微阵列,以实现单个石蜡块包含数以百计的组织样本,大大提高生物学信息通量,并有效防止了系统实验误差,这在分子诊断/预后指标筛选/治疗靶点定位/抗体和药物筛选/基因和蛋白表达分析等领域意义重大。组织芯片仪是制作组织芯片的必须工具
组织芯片制作仪分类和选购技巧
组织芯片制作仪,也叫阵列仪、点样仪。通过简单的操作将几百件组织样本进行精确的微阵列,以实现单个石蜡块包含数以百计的组织样本,大大提高生物学信息通量,并有效防止了系统实验误差,这在分子诊断/预后指标筛选/治疗靶点定位/抗体和药物筛选/基因和蛋白表达分析等领域意义重大。 组织芯片仪是制作组织芯片的必须工
微流控芯片制作方法详解
微流控芯片组成结构 微流控芯片由片基(pmma;玻璃,pdms等材料)一由通道,进液口,检测窗等结构构成。外围设备有蠕动泵,微量注射泵,控温,加速度,及紫外,光谱,荧光等检测部件组成。可以将生物学实验室的实验过程浓缩到一个片基上,因此又称为LABonchip。片基的结构由具体实验决定,设计和加
打破垄断!中国智造量子点液态芯片问世
近日,由上海交通大学材料科学与工程学院、张江高等研究院研究员李万万领衔的团队,成功研发出量子点液态生物芯片多指标体外检测系统。 液态生物芯片技术是一种新型检测技术,适用于核酸和蛋白类标志物,检测通量大、灵敏高、可同时分析单管样本中的数十种目标物,显著提升检测效率。该技术核心为特殊的荧光聚合物微
打破垄断!中国智造量子点液态芯片问世
原文地址:http://news.sciencenet.cn/htmlnews/2024/3/519750.shtm近日,由上海交通大学材料科学与工程学院、张江高等研究院研究员李万万领衔的团队,成功研发出量子点液态生物芯片多指标体外检测系统。液态生物芯片技术是一种新型检测技术,适用于核酸和蛋白类标志
生物芯片技术应用与药物筛选
利用基因芯片分析用药前后机体的不同组织、器官基因表达的差异。如果再cDNA表达文库得到的肽库制作肽芯片,则可以从众多的药物成分中筛选到起作用的部分物质。还有,利用RNA、单链DNA有很大的柔性,能形成复杂的空间结构,更有利与靶分子相结合,可将核酸库中的RNA或单链DNA固定在芯片上,然后与靶蛋白孵育
基因芯片的制备、应用与前景
摘要:基因芯片技术是90年代中期以来快速发展起来的分子生物学高新技术,是各学科交叉综合的崭新科学。其原理是采用光导原位合成或显微印刷等方法,将大量DNA探针片段有序地固化予支持物的表面,然后与已标记的生物样品中DNA分子杂交,再对杂交信号进行检测分析,就可得出该样品的遗传信息。基因芯片技术目前国
生物芯片技术应用与基因诊断
从正常人的基因组中分离出DNA与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可以得出病变图谱。通过比较、分析这两种图谱,就可以得出病变的DNA信息。这种基因芯片诊断技术以其快速、高效、敏感、经济、平行化、自动化等特点,将成为一项现代化诊断新技术。例如Affymet
基因芯片的制备、应用与前景
摘要:基因芯片技术是90年代中期以来快速发展起来的分子生物学高新技术,是各学科交叉综合的崭新科学。其原理是采用光导原位合成或显微印刷等方法,将大量DNA探针片段有序地固化予支持物的表面,然后与已标记的生物样品中DNA分子杂交,再对杂交信号进行检测分析,就可得出该样品的遗传信息。基因芯片技术目前国内
液相芯片技术的原理与应用
液相芯片,也称为微球体悬浮芯片(suspension array,liquid chip),是基于xMAP(flexible MultiAnalyte Profiling)技术的新型生物芯片技术平台,它是在不同荧光编码的微球上进行抗原抗体、酶底物、配体受体的结合反应及核酸杂交反应,通过红、绿
生物芯片技术应用与生物治疗
在实际应用方面,生物芯片技术可广泛应用于疾病诊断和治疗、药物基因组图谱、药物筛选、中药物种鉴定、农作物的优育优选、司法鉴定、食品卫生监督、环境检测、国防等许多领域。它将为人类认识生命的起源、遗传、发育与进化、为人类疾病的诊断、治疗和防治开辟全新的途径,为生物大分子的全新设计和药物开发中先导化合物的快
生物芯片技术应用与基因测序
基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速而具有十分诱人的前景。研究人员用含135000个寡核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列,准确率达99%。用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCA1基因序列差异,
流式荧光液芯技术的原理及其应用
曾经在2000年前后经历过辉煌发展的传统生物芯片,经过10年左右的应用,科学家们终于有了些更客观和更清醒的认识,同时产业界也衍生出了更专业更具特点的新型生物芯片。传统基于玻璃片、硅片、膜片的所谓“固态芯片”是生命科学研究领域中非常优秀的科研工具,它们的共同特点是在固态基材上极小的面积里合成或固
微流芯片将液态物质分析时间缩至几秒
近日,在最新一期《芯片实验室》杂志的封面上,刊登了化学方面一项新的世界纪录:德国莱比锡大学分析化学研究所的科学家运用微流芯片技术,使液态化学物质分离与质谱检测得以同时进行,从而将整个分析过程缩短到几秒钟。 莱比锡大学分析化学研究所德特勒夫·贝尔德教授领导的工作团队完成了这项
植物蛋白芯片的构建和抗原抗体相互作用的研究实验
实验材料异丙基-β-D-硫代半乳糖苷试剂、试剂盒PP 缓冲液变性裂解缓冲液仪器、耗材微量滴定板实验步骤3.1 高通量蛋白的表达和纯化我们用在 PQE30 表达载体里构建的,可表达带 N 端 RGS-His6 标记的大肠杆菌 cDNA 表达克隆来生产重组植物蛋白。由于超出本章节的范围,我们不在此详细叙
植物蛋白芯片的构建和抗原抗体相互作用的研究实验
实验材料 异丙基-β-D-硫代半乳糖苷试剂、试剂盒 PP 缓冲液变性裂解缓冲液仪器、耗材 微量滴定板实验步骤 3.1 高通量蛋白的表达和纯化我们用在 PQE30 表达载体里构建的,可表达带 N 端 RGS-His6 标记的大肠杆菌 cDNA 表达克隆来生产重组植物蛋白。由于超出本章节的范围,
植物蛋白芯片的构建和抗原抗体相互作用的研究实验
实验材料:异丙基-β-D-硫代半乳糖苷试剂、试剂盒:PP 缓冲液 变性裂解缓冲液 仪器、耗材:微量滴定板实验步骤:3.1 高通量蛋白的表达和纯化我们用在 PQE30 表
液相芯片技术的原理与应用进展
液相芯片,也称为微球体悬浮芯片(suspension array,liquid chip),是基于xMAP(flexible Multi Analyte Profiling)技术的新型生物芯片技术平台,它是在不同荧光编码的微球上进行抗原 抗体、酶 底物、配体 受体的结合反应及核酸杂交反应,
发酵的应用制作酵素
一是生产酵素菌。酵素菌是从自然界中分分离纯化获得的有益微生物,将其组合发酵形成,包括细菌、酵素菌、丝状菌三大类二十余种能产生流活性分解酶的微生物群体组成的产品,广泛应用于种植业、养殖业和人体保健食品行业。二是制作食用酵素。食用酵素(酶,enzyme)根据原料的多寡,又可分为综合酵素和专一酵素。综合酵
基因芯片制作时的点样方法有哪些
点样方法: 点样分子可以是核酸也可以是寡核酸。一些研究者采用人工点样的方法将寡核苷酸分子点样于化学处理后的载玻片上,经一定的化学方法处理非干燥后,寡核苷酸分子即固定于载玻片上,制备好的DNA芯片可置于缓冲液中保存。
用于制作微流控芯片材料的主要优势
微流控分析芯片发源于MEMS技术,因此早期常用的材料是晶体硅和玻璃。高分子聚合物材料近年来己经成为微流控芯片加工的主导材料,它的种类繁多、价格便宜、绝缘性好,可施加高电场实现快速分离,加工成型方便,易于实现批量化生产。晶体硅具有散热好、强度大、价格适中、纯度高和耐腐蚀等优点,随着微电子的发展,硅材料
基因芯片制作时的点样方法有哪些
点样方法: 点样分子可以是核酸也可以是寡核酸。一些研究者采用人工点样的方法将寡核苷酸分子点样于化学处理后的载玻片上,经一定的化学方法处理非干燥后,寡核苷酸分子即固定于载玻片上,制备好的DNA芯片可置于缓冲液中保存。