拟南芥sos突变体在盐胁迫下的离子流模式

SOS信号转导途径在植物离子平衡和耐盐中非常重要。SOS模型认为高Na+引起了胞内自由Ca2+的升高,激活了Ca2+结合蛋白编码的SOS3的表达,影响到下游的反应。SOS3激活了相连的SOS2(丝氨酸/苏氨酸蛋白激酶),SOS2/SOS3复合体调节盐忍耐因子编码的SOS1(质膜Na+/H+反向转运体)的表达水平,从而促使胞内过多的Na+排出体外。这其中涉及到K+的变化,Na+和K+平衡的破坏可能是SOS途径中的关键,但是详细的情况不清楚。尤其是在活细胞和组织水平的信号和离子转运缺乏电生理数据。 澳大利亚的科学家使用非损伤微测技术(MIFE)比较了拟南芥野生型col和sos突变体根部伸长区和成熟区的K+、H+和Na+流速的差异。研究发现:(1)SOS突变影响了整个根的功能,不仅仅是根尖区域;(2)SOS信号转导途径具有高度的分支;(3)Na+影响SOS1可能是通过根尖的SOS2/SOS3复合体;(4)SOS突变影响了H+的转运,即......阅读全文

选择性微电极在植物生理学研究中的应用(四)

5   在植物逆境生理研究中的应用随着选择性微电极技术的日益成熟,近年来,许多学者开始用选择性微电极探讨植物适应逆境的离子或分子流的瞬间变化(我们称之为原初响应机制)。Shabala(2000)考察了蚕豆叶片叶肉细胞在盐胁迫和渗透胁迫下离子流的响应机制,观察到90mM NaCl会导致K+出现明显的外

武汉植物园揭示褪黑素诱导植物抗逆和抑制叶片衰老的机制

  褪黑激素是迄今发现的最强的内源性自由基清除剂,在动物中其具有促进睡眠、调节时差、抗衰老、调节免疫、抗肿瘤等多项生理功能。近年来研究发现植物中也含有褪黑激素并已经在多种植物中特别是食用和药用植物中检测出来,因此在植物中广泛进行褪黑激素的研究将对人类的营养、医药和农业提供非常有益的信息。  狗牙根(

碳缓解情境下的水胁迫

  一项研究发现,在碳缓解情境下对食物和生物能源的需求增加可能增加水胁迫。由于全球气候变化预计将增加蒸散、干旱和其他水胁迫,碳排放缓解一直被视为缓解水胁迫的一条道路。Mohamad I. Hejazi 及其同事构建了一个具有精细的空间尺度的模型,整合了区域气候模型以及人类活动的模型,从而预测两种气候

著名学者朱健康教授发表最新Cell综述

  来自中科院上海生命科学研究院的朱健康(Jian-Kang Zhu)教授是植物抗逆生物学领域世界级领军人物之一,其及其领导的实验室在植物抗旱、抗盐与耐低温方面的研究硕果累累,在国内外享有声誉。朱教授也是首批“千人计划”入选者,现为美国普渡大学生物化学系和园艺及园林系杰出教授,2010年当选为美国国

中科院PNAS发表测序新成果

  来自中国科学院遗传与发育生物学研究所、深圳湖大基因研究所、美国伊利诺伊大学厄巴纳-香槟分校和美国普渡大学的研究人员联合发表了题为 “Insights into salt tolerance from the genome of Thellungiella salsuginea”的论文,解

拟南芥转录抑制子AL5提高植物对非生物胁迫耐受能力研究

  Alfin是一类植物所特有的PHD锌指蛋白,中国科学院遗传与发育生物学研究所基因组生物学研究中心陈受宜和张劲松实验室从拟南芥中鉴定出7个Alfin类PHD锌指蛋白。研究发现它们能结合G-rich DNA元件并具有转录抑制活性。通过比较野生型、突变体和过表达转基因植株在逆境胁迫时的表型,发现过量表

DExD⁄H框RNA解旋酶负调节拟南芥对低K+的忍耐

土壤的营养对植物的生长和代谢过程非常重要,植物需要从土壤中获取营养,并且演化出在不同的营养条件下确保能够继续吸收营养的适应机制。K+是重要的营养物质,在低K+胁迫下,很多植物表现出了不同程度的症状,如叶片发黄、生长受抑制等。过去的研究发现AKT1, HKT,KT⁄KUP⁄HAK家族的基因在K+转运中

研究发现NEK6激酶调控植物生长及胁迫反应和乙烯合成

  中国科学院遗传与发育生物学研究所基因组生物学研究中心张劲松实验室和陈受宜实验室研究发现,NEK6激酶调控植物生长及胁迫反应和乙烯合成。   前期的研究表明,烟草乙烯受体基因NTHK1在拟南芥中异源表达,导致转基因植株具有盐敏感的表型。对于NTHK1转基因植株的芯片分析发现,NEK

在植物适应空间飞行微重力环境研究方面获进展

  近日,中国科学院分子植物科学卓越创新中心光合与环境生物学实验室研究员蔡伟明研究组在iScience上在线发表题为Pectin methylesterase gene AtPMEPCRA contributes to physiological adaptation to simulated an

基于光流法分析水分胁迫条件下番茄叶片萎蔫与茎直径...

基于光流法分析水分胁迫条件下番茄叶片萎蔫与茎直径变化的关系2019年10月,Plant Phenomics刊发了来自日本静冈大学Kazumasa Wakamori和Hiroshi Mineno撰写的题为Optical Flow-BasedAnalysis of the Relationshi

模块式植物表型分析技术方案——拟南芥UV胁迫的响应机制

植物面对各种生物和非生物胁迫时,会调整它们的响应机制来优化发育和适应程序。UV辐射作为一种环境因子,会影响植物的光合过程并触发细胞死亡。华沙生命科学大学的Anna Rusaczonek评估了红/远红光感受器光敏色素A和光敏色素B在拟南芥UV胁迫响应中的作用。通过测量相关突变株的CO2同化、叶绿素荧光

白度仪在色差模式下如何操作

白度仪用于测量物体表面的兰光白度,利用积分球实现光谱漫反射率的测量,由卤钨灯发出的光线,经聚光镜和滤色片成兰紫色光线,进入积分球,光线在积分球内壁漫反射后,照射在测试口的试样上,由试样反射的光线经聚光镜、光栏滤色片组后由硅光电池接收,转换成电信号。其在色差模式下的两个样品比较色差方式如下:在使用此种

我国揭示SVP是ABA代谢的关键调控因子可-提高干旱耐受力

  近日,《Molecular Plant》在线发表了植物逆境中心朱健康研究组题为“The Flowering Repressor SVP Confers Drought Resistance in Arabidopsis by Regulating Abscisic Acid Catabolism

研究发现植物核孔蛋白在响应ABA信号与盐胁迫中的作用

  12月12日,中国科学院逆境生物学研究中心朱健康研究组和普渡大学博士后祝英方的研究成果,以An Arabidopsis Nucleoporin NUP85 modulates plant responses to ABA and salt stress为题,在线发表在PLOS Genetics上

DExD⁄H框RNA解旋酶负调节拟南芥对低K+的忍耐

     土壤的营养对植物的生长和代谢过程非常重要,植物需要从土壤中获取营养,并且演化出在不同的营养条件下确保能够继续吸收营养的适应机制。K+是重要的营养物质,在低K+胁迫下,很多植物表现出了不同程度的症状,如叶片发黄、生长受抑制等。过去的研究发现AKT1, HKT,KT⁄KUP⁄HAK家族的基因在

使用非损伤微测技术(NMT)研究盐胁迫的新机制(三)

向内调节不涉及到NaCl诱导的K+流失提高Na+浓度诱导Ca2+敏感的净K+的外流可能通过质膜TEA+敏感的外表直接的K+通道的活化作用所调节。 图5. 盐诱导的K+和Na+流的动力学 研究结论 NaCl引起的K+流失是由于Na+诱导的TEA+敏感K+的外流,非常可能是由两个渗透通道的成员DA

曹树青小组植物响应重金属信号转导研究获进展

  土壤重金属污染是全球面临的重要环境问题之一。近日,合肥工业大学教授曹树青课题组的一项研究,首次揭示了植物响应重金属镉胁迫信号转导的分子调控机制,为土壤重金属污染植物修复基因工程提供了新的技术途径和基因资源。该成果在线发表于《新植物学家》。  我国有近20%的耕地存在镉、砷、汞、铅、镍、铜等重金属

不同胁迫期间植物系统信号网络可以响应不同的胁迫

  植物组织对非生物胁迫、机械损伤或病原体攻击的感知导致了系统信号的激活,这些信号从受影响的组织传播到整个植物。这一过程是植物在逆境中生存所必需的,被称为系统信号传导。在这一过程中触发的不同信号有钙、膜电位、活性氧(ROS)和水势信号,并调节至关重要的植物响应过程。虽然在系统信号传递过程中被激活的不

植物如何应对地下缺水并响应干旱胁迫-多肽长距离运输

   2018年4月,Nature杂志在线发表了来自日本理化学研究所 Kazuo Shinozaki课题组题为“A small peptide modulates stomatal control via abscisic acid in long-distance signalling”研究论文。

非损伤微测技术应用于拟南花粉管Ca2+流速检测

植物虽然缺少很多在哺乳动物中调节细胞内钙离子浓度的机制,但是它们仍然利用钙离子信号来帮助完成多种生理功能,这其中仍有许多Ca2+调控机制还无法准确解释清楚。2018年5月4日,马里兰大学学者在Science上发表了一篇文章,题目为“CORNICHON sorting and regulation o

揭示长时间胁迫下植物平衡生长和胁迫响应的分子机制

  2021年6月15日,Plant Cell and Environmental在线发表了韩国浦项科技大学生物科学与生物技术系Inhwan Hwang教授课题组题为“Long-term ABA promotes GLK1 degradation through COP1 in a light in

李银心团队揭示盐芥适应高盐低磷生境分子机制

  近日,中国科学院植物研究所研究员李银心团队揭示了盐芥适应高盐低磷生境的分子机制。研究成果发表于《植物、细胞和环境》。  土壤盐渍化通常和土壤贫瘠相伴,严重影响植物生长。研究盐芥适应高盐低磷生境的分子机制,寻找盐和低磷胁迫信号通路的交叉调控元件,对于提高盐胁迫下作物的磷吸收利用效率具有重要科学意义

植物所在生物钟调控水稻耐盐性的机制解析中获进展

  水稻是全球主要的粮食作物,对盐胁迫敏感,盐渍环境会导致水稻产量显著下降。生物钟是内在的时间维持机制,在调节植物非生物胁迫响应过程中发挥关键作用,但目前,学界尚不清楚水稻生物钟核心组分是否参与耐盐性调节及其相关机制。  中国科学院植物研究所研究员王雷课题组发现,在转录水平,水稻生OsPRR(Ory

植物所在生物钟调控水稻耐盐性机制解析研究中获进展

  水稻是主要粮食作物,对盐胁迫敏感,盐渍环境会导致水稻产量显著下降。生物钟是内在的时间维持机制,在调节植物非生物胁迫响应过程中发挥关键作用,然而,目前关于水稻生物钟核心组分是否参与耐盐性调节及其相关机制尚不清楚。  中国科学院植物研究所研究员王雷研究组发现,在转录水平,水稻生OsPRR(Oryza

科学家为模式植物拟南芥绘制“蓝图”

  任何生物体的每个细胞都包含完整的遗传信息,或者说是一个生物的“蓝图”,编码所谓的DNA核苷酸构建块序列。但是植物是如何创造出各种各样的组织的呢?比如将光能转化成化学能并产生氧气的叶子,或者从土壤中吸收养分的根?答案就在各自组织细胞的蛋白质模式。科学家为模式植物拟南芥绘制“蓝图”。图片来源:Cha

我国科学家发现提高水稻抗旱能力基因

  我国科学家研究发现,在水稻中高表达拟南芥WRKY57基因能显著提高水稻对干旱和高盐胁迫的耐受性。该项研究成果已于近日发表在国际期刊《植物科学前沿》上。  干旱是限制农作物产量和品质的重要环境因素之一,但是国际上对于植物对干旱耐受性的潜在分子机制仍不清楚。  据论文第一作者,中科院西双版纳热带植物

抗凋亡基因(CED9)提高植株对盐胁迫和氧化应激的耐...

抗凋亡基因(CED-9)提高植株对盐胁迫和氧化应激的耐受性凋亡(Apoptosis)是细胞程序性死亡的一种,在调节植物对环境的适应性中起到重要作用。近期有研究表明动物的抗凋亡基因(CED-9)在植物中表达,能够显著提高植物对各种生物和非生物胁迫的耐受性,但隐藏在该现象下的最基本的细胞机制尚未被考察。

我国学者揭示RAFs和SnRK2s介导植物渗透胁迫早期应答过程

  1月30日,国际学术期刊《自然-通讯》(Nature Communications)在线发表中国科学院分子植物科学卓越创新中心上海植物逆境生物学研究中心王鹏程和朱健康研究组合作的研究论文“A RAF-SnRK2 kinase cascade mediates early osmotic stre

选择性微电极在植物生理学研究中的应用(三)

3        在植物生长发育研究中的应用光通过光周期和非光周期过程影响着叶片的展开。选择性微电极能探测到光诱导引起的与叶片生长有关的离子或分子信息。Zivanovic等(2005)利用选择性微电极比较了白光(2600 μmol·m-2·s-1)下及结合使用DCMU后的玉米叶片不同区域(叶基部和叶

借助根系分析仪分析水稻在低磷胁迫下的根系形态

植物的生长需要大量的水及肥料来供给营养,而这些影响的获取都是通过植物的根系来完成的,植物的根系越发达,枝叶也越繁茂,反之则枝叶枯黄,生长发芽不良,而且作物的产量和植物根系形态之间存在这密切的关系,因此借助根系分析仪分析植物根系的形态特征,对于现代精细农业的发展和作物的高产高质研究有非常重要的意义。根