Antpedia LOGO WIKI资讯

特殊蛋白—AMPK有望帮助开发新型抗癌药物

所有生物的基本单位都是细胞,人体中包含了数亿万亿计的细胞,而癌症可以由其中任何一个细胞的异常生长和分裂所引发,随后形成肿块或肿瘤。过去30多年的研究结果表明,癌症是由单个细胞DNA的突变所引发,很多突变都是无害的,但如果其影响了提供指令制造细胞生长和分裂所需蛋白质的DNA的话,就会诱发癌症。图片来源:en.wikipedia.org 传统观点认为,如果关闭了“好警察”(good cop)蛋白开启“坏警察”(bad cop)蛋白的话,这些改变就会引发癌症,“好警察”蛋白能作为肿瘤抑制子抑制细胞生长和分裂,但最新研究结果表明,这种简单的对肿瘤抑制子和启动子进行的分类或许在AMPK蛋白上出现了问题,AMPK是20世纪80年代邓迪大学的研究人员首次定义的一种特殊蛋白。 如果AMPK扮演“好警察”或“坏警察”的话,就会开启抑制肿瘤的能力,从而帮助有效抑制癌症发生,同时还会关闭促进肿瘤的能力,并帮助研究人员有效治疗疾病。 AMPK......阅读全文

揭示阿兹海默病的毒性机制

  阿兹海默病(一般俗称老年痴呆症,但医界不建议使用此名称)是一种致命的神经退行性疾病。  近日,美国斯克利普斯研究所(The Scripps Research Institute)的研究人员揭示了阿兹海默病中的一个主要毒性机制。这项研究将帮助人们更好的理解阿兹海默病进程,并有助于开发新型药物进行治

Cell子刊:解析阿尔茨海默症中的毒性通路

  Scripps研究所(TSRI)的科学家们,揭示了阿尔茨海默症中的一个主要毒性机制,文章于四月十日发表在Neuron杂志上。这项研究将帮助人们更好的理解阿尔茨海默症进程,并有助于开发新型药物进行治疗。  研究人员发现,阿尔茨海默症中的大脑损伤与AMPK酶的过活跃有关。他们在阿尔茨海默症小鼠模型中

复旦特聘教授石雨江发表文章:癌症与糖尿病之间新通路

   近年来临床研究发现,糖尿病患者患癌症的比率已明显高于非糖尿病患者,而治疗糖尿病的药物二甲双胍也在降低癌症风险上展现出优良成效。在糖尿病和癌症这两种疾病之间,是否存在着某种仍未被科学研究发现的联系?为何防治糖尿病的药物二甲双胍也能够在预防癌症的舞台上大显身手?  最近,来自复旦大学生物医学研究院

复旦大学最新Nature文章:癌症与糖尿病之间新通路

  近年来临床研究发现,糖尿病患者患癌症的比率已明显高于非糖尿病患者,而治疗糖尿病的药物二甲双胍也在降低癌症风险上展现出优良成效。在糖尿病和癌症这两种疾病之间,是否存在着某种仍未被科学研究发现的联系?为何防治糖尿病的药物二甲双胍也能够在预防癌症的舞台上大显身手?  最近,来自复旦大学生物医学研究院,

蛋白质翻译后修饰通过泛素化降解途径调节脂肪酸合成

  2月7日,国际学术期刊《自然-通讯》(Nature Communications)在线发表了中国科学院上海营养与健康研究所李于研究组的最新研究成果“Post-translational regulation of lipogenesis via AMPK-dependent phosphoryl

我国学者揭示CREBZF和AMPK介导的Insig在脂质代谢中关键作用

  近日,国际学术期刊Nature Communications在线发表了中国科学院上海营养与健康研究所李于研究组的最新研究成果“Post-translational regulation of lipogenesis via AMPK-dependent phosphorylation of in

研究发现调节脂肪酸合成的新机制

  2月7日,国际学术期刊《自然-通讯》(Nature Communications)在线发表了中国科学院上海营养与健康研究所李于研究组的最新研究成果“Post-translational regulation of lipogenesis via AMPK-dependent phosphoryl

揭秘癌症发生过程中扮演双面角色的特殊蛋白

  所有生物的基本单位都是细胞,人体中包含了数亿万亿计的细胞,而癌症可以由其中任何一个细胞的异常生长和分裂所引发,随后形成肿块或肿瘤。过去30多年的研究结果表明,癌症是由单个细胞DNA的突变所引发,很多突变都是无害的,但如果其影响了提供指令制造细胞生长和分裂所需蛋白质的DNA的话,就会诱发癌症。  

厦门大学林圣彩再次发力,解密葡萄糖感知通路关键一环

  机体有着一系列精妙的机制来感知糖、脂类和氨基酸等营养物质的水平,并做出反应以维持物质和能量代谢的稳态;若感应机制失效,则可能导致代谢性疾病的发生。这些过程不但是生物学的一个核心问题,也与我们的生活密切相关。葡萄糖是生物体最基本的物质和能量的来源,其水平升高会引起胰岛素的分泌,进一步引起包括脂肪合

西南医学中心等研究团队的在Nature发文的最新研究

  近日,一项刊登在国际杂志Nature上题为“TLR9 and beclin 1 crosstalk regulates muscle AMPK activation in exercise”的研究报告中,来自西南医学中心等机构的科学家们通过研究揭示了锻炼期间Toll样受体9(Toll-like

Nature medicine 华人研究:吸烟易引起糖尿病发生

  近日,著名国际学术期刊nature medicine在线发表了华人科学家Ming-Hui Zou研究小组的最新研究进展,他们发现烟草中的尼古丁会激活脂肪细胞中的蛋白激酶AMPKα2,导致下游信号通路激活,增加脂肪细胞中的脂解过程,虽然出现体重下降,但是会导致严重的胰岛素抵抗。  之前研究发现,吸

不得不看的2月Nature杂志重磅级亮点研究

  时间总是匆匆易逝,转眼间2月份即将结束,在即将过去的2月里,Nature杂志又有哪些亮点研究值得学习呢?小编对相关文章进行了整理,与大家一起学习。  图片来源:The Sanger Institute/UCL  【1】Nature:戒烟者肺部中的更多健康细胞可降低肺癌风险  doi:10.103

近代物理所线粒体假膜电势诱导细胞自噬研究获进展

  中国科学院近代物理研究所辐射医学室科研人员利用兰州重离子加速器国家实验室和中科院重离子束辐射生物医学重点实验室提供的实验平台,研究外源性正电荷替换质子、构建线粒体假膜电势诱导细胞自噬获得新进展。  真核细胞利用线粒体内膜呼吸链,将NADH和FADH2氧化、伴随有质子产生并泵入线粒体膜间隙中。质子

清华大学Nature新文章挑战前论

  来自清华大学生命科学学院、北京大学的研究人员,在新研究中解析了腺苷酸活化蛋白激酶(AMPK)保守调控元件的结构,相关论文“Conserved regulatory elements in AMPK”发表6月12日的《自然》(Nature)杂志上。   论文的通讯作者是清华大学生命科学学院的

科学家发现衰老过程中维持肌肉功能的关键分子

  肌肉中的AMPK对于饥饿状态下自噬的诱导发生非常重要  饥饿状态下,AMPK对于促进蛋白水解维持血糖平衡具有重要作用  AMPK缺失会加速衰老诱导的肌病发生以及线粒体功能紊乱  近日,来自加拿大的科学家在国际学术期刊cell metabolism发表了一项最新研究进展,他们通过研究发现蛋白激酶A

Nlrp3炎性体与胰岛素抵抗

  肥胖是一个严重的健康问题,其特点为白色脂肪组织的过度扩张,并伴随着慢性、低度炎症的状态。1 肥胖相关炎症的发生是因为脂肪组织的免疫细胞浸润和促炎性细胞因子的产生增加。2 这些变化会对正常的脂肪细胞功能带来不利影响,如甘油三酯储存和脂肪分解,导致高循环水平的游离脂肪酸和脂质异位积累。3

想“长生不老”?听听科学家怎么说

  人为什么会衰老?  在最近发表在《细胞》上的一篇综述文章中,对近年来延缓衰老的研究进展进行了总结 ,文中介绍了一些得到实验验证的、能有效延缓衰老的方法。  科学家们们的工作通常以“为什么“作为开始。那么,读者有没有想过我们为什么要延缓衰老呢?难道科学家也想”长生不老“吗?好奇心是研究的一大动力,

代谢干预或可实现治疗高血压肾病

  长期的高盐摄入会增加患高血压的风险,而高血压是一种常见的慢性病,通常认为它会损害肾脏的肾小球,导致尿蛋白增加,从而引起肾脏疾病。  为了研究肾脏疾病,科研人员使用了一个多组学策略,即整合并分析了代谢组学、磷蛋白组学和蛋白组学的数据,发现了代谢组控制的与生理功能相关的关键通路和机制,其成果发表在《

Science 子刊:代谢干预或将实现高血压肾病的治疗

  长期的高盐摄入会增加患高血压的风险,而高血压是一种常见的慢性病,通常认为它会损害肾脏的肾小球,导致尿蛋白增加,从而引起肾脏疾病。  为了研究肾脏疾病,科研人员使用了一个多组学策略,即整合并分析了代谢组学、磷蛋白组学和蛋白组学的数据,发现了代谢组控制的与生理功能相关的关键通路和机制,其成果发表在《

南京大学陈帅教授《Diabetologia》:发现葡萄糖吸收新机理

  南京大学模式动物研究所陈帅教授实验室在能量感受器AMPK调控骨骼肌葡萄糖吸收机理研究方面取得重要进展,相关成果“A TBC1D1Ser231Ala knockin mutation partially impairs AICAR -but not exercise-induced muscle

Cell子刊新发现让癌细胞刹车

  来自麦吉尔大学的研究人员发现:癌细胞中的一个能量代谢关键调控子腺苷酸活化蛋白激酶(AMPK)有可能在抑制癌细胞生长中发挥至关重要的作用。 AMPK充当了细胞中的“燃油表”(fuel gauge);当感知到能量水平改变时AMPK会被开启,在能量水平较低如锻炼或禁食之时它可以帮助改变代谢。研

科学家揭开二甲双胍如何作为糖尿病药物发挥作用

  众所周知,素有“神药”之称的二甲双胍是2型糖尿病的一线药物,它通过影响葡萄糖和脂质代谢而发挥作用,从而导致胰岛素敏感性增强。虽然近年来二甲双胍已经被深入研究,但研究人员对其控制血糖水平的分子基础仍知之甚少。因为到目前为止,对二甲双胍研究的特定生化途径所知有限。  2019年12月4日,美国Sal

2017年8月4日Science期刊精华

  本周又有一期新的Science期刊(2017年8月4日)发布,它有哪些精彩研究呢?让小编一一道来。  1.Science:在红细胞终末分化期间,UBE2O重建它的蛋白质组  doi:10.1126/science.aan0218; doi:10.1126/science.aao1896  在一项

糖尿病最新研究进展

  本期为大家带来的是糖尿病的病理学与治疗相关领域的最新研究成果,希望读者朋友们能够喜欢。  1. Sci Signal:心脏激素能够缓解肥胖以及糖尿病耐受性  DOI: 10.1126/scisignal.aam6870  最近,来自斯坦福大学Burnham Prebys医学发现研究所(SBP)以

利用MK-8722靶向全部12种哺乳动物AMPK可缓解糖尿病

  腺苷酸活化蛋白激酶(AMPK)是真核生物能量平衡的一种主要的调节物。当能量水平下降时,AMPK被激活。接着这会激活产生ATP的通路,从而促进葡萄糖摄取和抑制与葡萄糖合成相关的消耗ATP的通路。AMPK激活是通过它的α亚基上的T172位点发生磷酸化介导的。这种发生磷酸化的AMPK被称作pAMPK。

复旦教授揭示:“神药”二甲双胍抑制肿瘤的机理

图片来源:CC0 Creative Commons  7月19日凌晨,《Nature》杂志在线发表了施扬教授和石雨江教授团队的这项研究成果,论文题为“Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking

我国科学家发现细胞“饥饿”信号传导机制

  近日,厦大生命科学学院林圣彩教授课题组的一项研究发现了细胞“饥饿”信号传导通路中的关键一环,从而揭示了细胞“饥饿”信号传导机制的过程,这一发现被认为对研究包括肥胖、糖尿病、脂肪肝等在内的代谢疾病的发生发展机制及治疗新方法有着重大意义。近日,国际顶尖学术杂志《细胞》子刊《细胞—代谢》发表了这一研究

研究人员发现了对血管系统具有抗衰老作用的分子

来自佐治亚州立大学的研究人员指出,在禁食或限制卡路里时产生的分子对血管系统具有抗衰老作用,这能用于减少与血管相关的人类疾病的发生和严重程度,例如心血管疾病。这一研究成果公布在9月6日的Molecular Cell杂志上,由佐治亚州立大学的邹明辉教授领导完成,邹明辉教授研究心血管生物学及糖尿病

Hepatology:揭示STRT3在自噬中的新作用

  来自美国伊利诺斯大学芝加哥分校,浙江中医药大学等处的研究人员发表了题为“SIRT3 Acts As a Negative Regulator of Autophagy Dictating Hepatocyte Susceptibility to Lipotoxicity”的文章,发现了SIRT3

5大抗癌成果!3大新用途!2018,二甲双胍牛气了

  二甲双胍(metformin)是治疗二型糖尿病的一线药物。近年来,科学家们先后发现它还具有抗衰老、抗癌、改善自闭症症状等多重潜力,因而被誉为“神药”。回顾2018年,二甲双胍 “业绩不菲”,来自全球的多个研究团队再次证实了它的魔力!  首当其冲的自然是“抗癌”潜力:  1# 二甲双胍找到“神助攻