基于八大基因组学数据库构建迄今最完整的癌症eRNA图谱
增强子RNA(eRNA)是一种从增强子转录的非编码RNA。目前,科学家已经在人类细胞中鉴定出数以万计的eRNA,其中许多都在RNA转录过程中发挥重要作用,以介导靶基因的激活。在人类癌症中,癌基因或致癌信号通路的激活通常引起增强子的激活和eRNA的产生。例如,ESR1的激活可以整体上增加乳腺癌中eRNA的转录。此外,癌基因诱导的eRNA在某些情况下可以直接促进肿瘤发生。虽然人们越来越认识到eRNA在致病基因转录控制中的关键作用,但eRNA在癌症中的系统结构和潜在功能仍未得到充分探索。 近日,美国德克萨斯大学休斯敦健康研究中心的韩冷教授研究团队联合李文博教授研究团队在Nature Communications发表了迄今最完整的癌症eRNA图谱,并揭示了eRNA在癌症治疗中的潜在临床应用,证明许多eRNAs具有强烈的癌症类型特异性表达模式,eRNAs或可作为癌症治疗中强有力的诊断或预后标志物。文章题为“Transcription......阅读全文
基于八大基因组学数据库-构建迄今最完整的癌症eRNA图谱
增强子RNA(eRNA)是一种从增强子转录的非编码RNA。目前,科学家已经在人类细胞中鉴定出数以万计的eRNA,其中许多都在RNA转录过程中发挥重要作用,以介导靶基因的激活。在人类癌症中,癌基因或致癌信号通路的激活通常引起增强子的激活和eRNA的产生。例如,ESR1的激活可以整体上增加乳腺癌中e
癌症eRNA表达图谱并揭示其在癌症临床中的应用
2019年10月8日,德克萨斯大学休斯敦健康研究中心的韩冷、李文博课题组合作在Nature Communications上在线发表题为“Transcriptionallandscape and clinical utility of enhancer RNAs for eRNA-targeted
The-scientist为你解读神秘的eRNA
近年来科学家们发现,增强子也常常转录成RNA,不过他们还不能确定这些eRNA有何功能。日前,The scientist杂志刊发文章对这种神秘的eRNA进行了解读。 增强子大约发现于三十五年前,关于这一元件还有许多的未解之谜。与启动子不同的是,增强子能够上调较远距离的基因,这一距离并不一定,不过
顶级实验室《Nature》发布表观基因组学图谱
基因组中表观遗传变化是能遗传的,近期来自Salk生物学研究所等处的一组研究人员完成了一项野生植物表观基因组学全范围内的研究分析,从中发现了这种修饰与遗传信息相互作用的共同模式。这一成果公布在3月7日Nature杂志在线版上。 文章通讯作者是Salk研究所的著名教授Joseph R. E
海南大学团队定义植物基因组学“终极参考图谱”
近日,记者从海南大学获悉,该校三亚南繁研究院陈飞教授团队首次构建了“分型端粒到端粒超级泛基因组”理论体系,实现了植物基因组从个体单倍型完整到群体遗传多样性全覆盖的技术跨越。相关成果发表在国际期刊《植物科学趋势》。植物基因组研究长期受制于参考基因组的局限——传统组装难以解析着丝粒、端粒等复杂区域,且无
科学家绘制小细胞肺癌蛋白基因组学图谱
肺癌是全球癌症致死的首位原因,而小细胞肺癌约占肺癌总数的15%,是所有肺癌亚型中恶性程度最高、预后最差的亚型,5年生存率仅为5%。与非小细胞肺癌形成鲜明对比,小细胞肺癌的治疗手段单一,患者总生存率低。分子表征与组学研究不足,限制了小细胞肺癌的基础研究和临床进展,迄今为止,仅有少量针对小细胞肺癌临床样
科学家绘制小细胞肺癌蛋白基因组学图谱
肺癌是全球癌症致死的首位原因,而小细胞肺癌约占肺癌总数的15%,是所有肺癌亚型中恶性程度最高、预后最差的亚型,5年生存率仅为5%。与非小细胞肺癌形成鲜明对比,小细胞肺癌的治疗手段单一,患者总生存率低。分子表征与组学研究不足,限制了小细胞肺癌的基础研究和临床进展,迄今为止,仅有少量针对小细胞肺癌临
我国科研人员绘制小细胞肺癌蛋白基因组学图谱
肺癌是全球癌症致死的首位原因,而小细胞肺癌约占肺癌总数的15%,是所有肺癌亚型中恶性程度最高、预后最差的亚型,5年生存率仅为5%。与非小细胞肺癌形成鲜明对比,小细胞肺癌的治疗手段单一,患者总生存率低。分子表征与组学研究不足,限制了小细胞肺癌的基础研究和临床进展,迄今为止,仅有少量针对小细胞肺癌临
利用大规模比较基因组学绘制A群链球菌候选疫苗图谱
近日,澳大利亚昆士兰大学等科研人员在Nature Genetics上发表了题为“Atlas of group Astreptococcalvaccine candidates compiled using large-scale comparative genomics”的文章,利用大规模比较基
eRNA与Super-Enhancer-RNA在转录调控中扮演的角色
增强子是真核生物中关键的顺式作用基因调控元件,能有效地促进基因表达。它们可以通过作为转录因子和辅助因子的结合平台来维持转录的精确控制。超级增强子是由一簇典型增强子串联组成的具有更强转录调控能力的顺式元件。而全基因组分析发现增强子和超级增强子可以普遍进行转录,产生eRNA和SE-lncRNA。它们都具
转录图谱的转录图谱的意义
在于它能有效地反应在正常或受控条件中表达的全基因的时空图。通过这张图可以了解某一基因在不同时间不同组织、不同水平的表达;也可以了解一种组织中不同时间、不同基因中不同水平的表达,还可以了解某一特定时间、不同组织中的不同基因不同水平的表达。人类基因组是一个国际合作项目:表征人类基因组,选择的模式生物的D
基因组学分析揭示
英国《自然》杂志18日在线公开的一篇基因组学论文显示,来自西伯利亚阿尔泰山脉东部尼安德特人的祖先,和现代人祖先的相遇与交融繁殖可能比原先认为的更早。已有证据显示,尼安德特人在47000年到65000年前在非洲之外就向现代人贡献了遗传物质。这项新研究还显示,大约在10万年前,现代人和尼安德特人之间
临床物理检查方法平衡法放射性核素心血管造影(ERNA)
平衡法放射性核素心血管造影(ERNA)介绍: 平衡法放射性核素心血管造影(ERNA) 包括以下几项: (1) 血池显像,肝脾等脏器内占位病变的血池影像浓于正常组织,是海绵状血管瘤的特征。 (2) 室壁运动电影显示,室壁瘤的特征是静息时局部室壁无运动或已有反常搏动,运动后反常搏动出现或更加明显。
阅读质粒图谱
载体主要有病毒和非病毒两大类,其中质粒DNA是一种新的非病毒转基因载体。一、一个合格质粒的组成要素 复制起始位点Ori 即控制复制起始的位点。原核生物DNA分子中只有一个复制起始点。而真核生物DNA分子有多个复制起始位点。 抗生素抗性基因 可以便于加以检测,如Amp+ ,Kan+ 多克隆
红外图谱口诀
红外识谱图看似复杂,其实也有规律可循,试试这个口诀,说不定 也是一种方法。 红外可分远中近,中红特征指纹区, 1300来分界,注意横轴划分异。 看图要知红外仪,弄清物态液固气。 样品来源制样法,物化性能多联系。 识图先学饱和烃,三千以下看峰形。 2960、2870是甲基
XPS图谱解释
(1)谱线识别X射线入射在样品上,样品原子中各轨道电子被激发出来成为光电子。光电子的能量统计分布(X射线光电子能谱)代表了原子的能级分布情况。不同元素原子的能级分布不同,X射线光电子能谱就不同,能谱的特征峰不同,从而可以鉴别不同的元素。电子能量用E = Enlj 表示。光电子则用被激发前原来所处的能
美印药物基因组学与癌症基因组学检测商业化
美国Companiondx实验室拟与健康信息技术服务商Enable Healthcare合作,向医生推广药物基因组学检测;印度癌症医学公司HCG宣布建立一个新的肿瘤基因中心,旨在下代测序技术能够帮助定位肿瘤,从而提高化疗和放疗的效率和响应率 美国药物基因组学检测商业化 Companiondx实验
Science专题:癌症基因组学
在2001年完成人类基因组测序后,许多的研究人员立即将目光放到了利用这些信息来更好地了解遗传学上。最近,越来越多的研究确定了表观遗传学在癌症的发生、形成及发展过程中起效应。从鉴别与遗传性癌症相关的单基因变异的前基因组时代转向,测序技术的进步使得研究人员能够利用全基因组方法来检测基因组间的差异,以
药物基因组学的定义
药物基因组学(pharmacogenomics),又称基因组药物学或基因组药理学,是药理学的一个分支,定义为在基因组学的基础上,通过将基因表达或单核苷酸的多态性与药物的疗效或毒性联系起来,研究药物如何由于遗传变异而产生不同的作用。
毒理基因组学的定义
毒理基因组学(toxicogenomics)是从多基因、全基因组水平研究毒物作用与基因表达的相互影响。其研究内容主要包括3个方面:促进环境应激原与疾病易感性关系的理解、阐明毒性分子机制、筛选和确认与疾病和毒物暴露相关的生物标志物(biomarkers)。
EDS图谱是什么
色散谱英文全称:Energy Dispersive Spectroscopy原理:利用不同元素的X射线光子特征能量不同进行成分分析。
转录图谱的原理
所有生物性状和疾病都是由结构或功能蛋白质决定的,而已知的所有蛋白质都是由mRNA编码的,这样可以把mRNA通过反转录酶合成cDNA或称作EST的部分的cDNA片段,也可根据mRNA的信息人工合成cDNA或cDNA片段,然后,再用这种稳定的cDNA或EST作为“探针”进行分子杂交,鉴别出与转录有关的基
质粒图谱的阅读
载体主要有病毒和非病毒两大类,其中质粒DNA是一种新的非病毒转基因载体。一、一个合格质粒的组成要素 复制起始位点Ori 即控制复制起始的位点。原核生物DNA分子中只有一个复制起始点。而真核生物DNA分子有多个复制起始位点。 抗生素抗性基因 可以便于加以检测,如Amp+ ,Kan+ 多克隆
怎么分析XRD图谱
1、XRD图中有很多信息,如组成(物相)和结构、粒度、应力、结晶度等,其分析方法各不相同。2、比如,若是做物相分析,样品是已知物质的,你只要将XRD图谱与标准图进行比对就可以大致判断,一般设备中都会提供已知物数据库,供调用比对。3、当然杂相分析就需要一定的经验了,不是一两句话就能说清楚的。4、若是做
连锁图谱的定义
又称连锁图谱(linkage map),它是以具有遗传多态性(在一个遗传位点上具有一个以上的等位基因,在群体中的出现频率皆高于1%)的遗传标记为“路标”,以遗传学距离(在减数分裂事件中两个位点之间进行交换、重组的百分率,1%的重组率称为1cM)为图距的基因组图。遗传图谱的建立为基因识别和完成基因定位
转录图谱的定义
转录图谱是在识别基因组所包含的蛋白质编码序列的基础上绘制的结合有关基因序列、位置及表达模式等信息的图谱。在人类基因组中鉴别出占具2%~5%长度的全部基因的位置、结构与功能,最主要的方法是通过基因的表达产物mRNA反追到染色体的位置。
物理图谱的定义
物理图谱是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。绘制物理图谱的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。DNA物理图谱是指DNA链的限制性酶切片段的排列顺序,即酶切片段在DNA链上的定位。因限制性内切酶在DN
怎么分析XRD图谱
1、XRD图中有很多信息,如组成(物相)和结构、粒度、应力、结晶度等,其分析方法各不相同。2、比如,若是做物相分析,样品是已知物质的,你只要将XRD图谱与标准图进行比对就可以大致判断,一般设备中都会提供已知物数据库,供调用比对。3、当然杂相分析就需要一定的经验了,不是一两句话就能说清楚的。4、若是做
怎么分析XRD图谱
1、XRD图中有很多信息,如组成(物相)和结构、粒度、应力、结晶度等,其分析方法各不相同。2、比如,若是做物相分析,样品是已知物质的,你只要将XRD图谱与标准图进行比对就可以大致判断,一般设备中都会提供已知物数据库,供调用比对。3、当然杂相分析就需要一定的经验了,不是一两句话就能说清楚的。4、若是做
如何看懂XRD图谱
XRD图谱峰的面积表示晶体含量,面积越大,晶相含量越高。峰窄说明晶粒大,可以用谢乐公式算晶粒尺寸。XRD图谱峰高如果是相对背地强度高,表示晶相含量高,跟面积表示晶相含量一致。XRD图谱峰高如果是A峰相对B峰高很多,两峰的高度比“A/C”相对标准粉末衍射图对应峰的高度比要大很多,那么这个材料是A方向择