侧链调控共轭聚合物半导体性能研究方面取得系列进展

近年来,有机共轭聚合物由于其优异的半导体性能,以及在多个领域的应用前景,受到广泛关注。载流子迁移率是有机半导体性能的重要参数。国内外众多课题组主要通过设计合成新的共轭分子和高分子来调节分子的电子结构和聚集态结构,进而提高载流子迁移率。近年来,研究结果表明共轭分子和高分子中的烷基侧链的结构不仅可以改善共轭分子和高分子的溶解度,也可以影响分子(共轭主链)间的排列有序性,进而影响半导体的传输性能。 在中国科学院战略性先导科技专项B和国家自然科学基金委的支持下,中科院化学研究所有机固体重点实验室张德清课题组针对烷基侧链对共轭(高)分子聚集态结构、载流子传输性能的调控以及新功能构建等方面开展了深入研究,取得系列研究进展。他们通过改变基于DPP的共轭D-A高分子的烷基侧链结构,成功制备含“直链/支链”共轭高分子。在不改变共轭主链结构的情况下,“直链/支链”共轭高分子薄膜的迁移率显著提高,达到9.4cm2V-1s-1(Chem. Mat......阅读全文

什么是共轭效应?

  共轭效应 (conjugated effect) ,又称离域效应,是指共轭体系中由于原子间的相互影响而使体系内的π电子(或p电子)分布发生变化的一种电子效应。凡共轭体系上的取代基能降低体系的π电子云密度,则这些基团有吸电子共轭效应,用-C表示,如-COOH,-CHO,-COR;凡共轭体系上的取代

共轭效应的影响

所谓共轭效应,是指在分子中形成离域的pai键,使电子能在整个空间运动,从而降低了能量,使结构更稳定。对于一个产生共轭结构的反应,由于产物能量更低,会使得这个方向反应的趋势更大,另外就是对化学键性质的改变,例如在CH2=CH-CH=CH2中,四个碳是共轭结构,从而使得键长平均化,第二个C-C键变短,类

什么是共轭效应?

在单烯烃中碳碳双键上的π电子的运动范围,局限在两个碳原子之间,称为定域运动。在双键单键双键共轭的体系,如1,3-丁二烯分子中4个碳原子上的π电子的运动范围,已不局限于两个碳原子之间,而是在4个碳原子的分子轨道中运动,称为离域现象。π电子的离域现象使得电子云的密度分布有所改变,内能降低,分子更趋于稳定

什么是共轭效应

共轭效应又称离域效应,是指共轭体系中由于原子间的相互影响而使体系内的π电子 (或p电子)分布发生变化的一种电子效应称为共轭效应。共轭体系能降低体系π电子云密度的基团有吸电子的共轭效应,能增高共轭体系π电子云密度的基团有给电子的共轭效应。单双建交替出现的体系或双键碳的相邻原子上有p轨道的体系均为共轭体

碘化铯锡半导体热电性能独特

  美国研究人员发现,一种名为碘化铯锡(CsSnI3)的晶体半导体材料具有独特的热电性能,能在保持高电导率的同时,隔绝大部分热量传递。他们在日前出版的美国《国家科学院学报》上发表文章指出,这种材料的热电性质独特,应用前景十分广阔。  碘化铯锡是一种半导体材料,几十年前就被发现,但直到最近几年才受到一

碳化硅杂化聚合物原料性能介绍

  碳化硅杂化聚合物原料性能介绍  碳化物,是金刚石的混合体,故取名金刚砂,碳化硅微粉在油漆和涂料:  1、树脂用量少/加量的潜力大:因为形状中,球形具有小的比表面积,对树脂的需求量也少。颗粒的堆积情况。碳化硅陶瓷微粉的宽的粒径分布使得小的微球能够填充到大的微球之间的空隙中。其结果就是:高加入量、高

宁波材料所等在sp2碳共轭有机框架材料构筑方面获进展

  二维共价有机框架(2D COFs)聚合物作为新一代有机半导体材料,具有可调的光电性质、开放的纳米孔道和丰富的活性位点,在光电催化、能源转换和有机电子等领域展现出应用前景。特别是碳碳双键连接的共价有机框架聚合物(sp2c-COFs)凭借拓展的π共轭、优异的稳定性和高载流子迁移率等特性,成为COFs

我国学者在三线态有机太阳能电池研究领域取得进展

  从单线态到三线态的系间穿越是光物理的重要基本过程,同时,具有大量三线态的有机半导体材料在光伏、室温磷光和光动力学领域都具有广泛的应用前景。因此,设计并合成三线态有机半导体材料是材料领域的前沿热点,吸引了科学家的广泛关注。  在有机太阳能电池领域,三线态材料的工作机理一直存在不同的科学观点。早期的

俄科学家研制成功新型薄膜太阳能电池新材料

  俄罗斯总统经济现代化和创新发展委员会发布消息称,俄科学院化学物理问题研究所的科研人员研制成功一种基于有机半导体材料的高效、稳定的薄膜太阳能电池。该有机半导体材料由共轭聚合物和富勒烯的衍生物构成,研究项目是在俄科学基金的支持下完成的,成果发表于科学期刊《Journal of Materials C

俄科学家研制成功新型薄膜太阳能电池新材料

  俄罗斯总统经济现代化和创新发展委员会发布消息称,俄科学院化学物理问题研究所的科研人员研制成功一种基于有机半导体材料的高效、稳定的薄膜太阳能电池。该有机半导体材料由共轭聚合物和富勒烯的衍生物构成,研究项目是在俄科学基金的支持下完成的,成果发表于科学期刊《Journal of Materials C

科学家开发出太阳能电池用新型聚合物材料

   迄今为止,世界上80%以上的能源是通过燃烧石油、天然气和煤产生的。首先,这会导致严重的环境污染;其次,人类在过去不到两百年的时间里已消耗了经过数百万年形成的全球石油资源可开采储量的一半以上。目前,世界各地的科学家的主要目标集中在如何提高太阳能的光电转换效率,却很少有人关注太阳能电池板基体材料的

有机半导体湿度传感器概述

  导电能力介于金属和绝缘体之间,具有热激活电导率且电导率在10-10~100S·cm-1范围内的有机物。有机半导体可分为有机物、聚合物和给体-受体络合物三类。有机物类包括芳烃、染料、金属有机化合物,如紫精、酞菁、孔雀石绿、若丹明B等。聚合物类包括主链为饱和类聚合物和共轭型聚合物,如聚苯、聚乙炔、聚

苏州纳米所单手性碳纳米管高纯度分离技术研究获进展

  单手性碳纳米管是一种颇具前途的电子和光电子材料,具有确定的能带结构和近红外吸收发射特性,在碳基集成电路、红外光探测器与量子光源等方面有广泛的应用前景,有望成为下一代碳基电子的核心材料。已有较多方法(如梯度密度离心法、凝胶色谱法、双水相法)可分离得到多种单手性碳管,但这些单手性碳管的直径基本在1.

用于电致变色人工肌肉的无机半导体纱线

  东华大学Materials Horizons:  无机半导体纱线半导体纤维在人机交互、能量转化等方面的优势吸引了可穿戴领域的广泛关注。目前的半导体纤维以共轭聚合物材料为主,但其载流子迁移率和力学强度较低;无机半导体作为现代电子器件的基础材料,本可成为半导体纤维的理想基元,但是无机半导体纤维尚缺乏

三元聚合物锂电池的性能介绍

  在容量与安全性方面比较均衡的材料,循环性能好于正常钴酸锂,前期由于技术原因其标称电压只有3.5-3.6V,在使用范围方面有所限制,随着配方的不断改进和结构完善,电池的标称电压已达到3.7V,在容量上已经达到或超过钴酸锂电池水平。

聚合物锂电池测试安全性能的介绍

  1、电芯快速充电并搁置2h后放置于热箱中,温度以(5±2C)/min的速率升至130±2℃并保温30min;  要求:不起火,不爆炸  2、过充电  将电芯快速充电并搁置24h后,以600mA恒流充电,直到电芯电压达到5V,电流将到接近零后电芯温度比峰值温度低约10℃。  要求:不起火,不爆炸 

有机半导体热电材料性能指数翻倍

  据美国《每日科学》网站5月5日报道,热电材料是一种能将热能和电能相互转换的功能材料,目前的有机半导体热电材料的热电转化效率一般比较低。美国科学家最新发现了一种方法,将目前表现最好的有机半导体热电材料的效率提高了70%。研究发表在5月5日出版的《自然·材料学》杂志上。   现在最高效的热电材料一

长春应化所发明含有功能端基的共轭高分子材料

  5月18日,从中国科学院长春应用化学研究所杨小牛研究组获悉,科研人员发明的“一种含有功能端基的聚(3-丁基噻吩)及其制备方法”获得国家知识产权局授权。  聚(3烷基噻吩)因其优异的光电及加工性能近年来一直是高分子半导体器件等领域研究的热点。而随着研究的深入,其中的聚(3丁基噻吩)的科研价值也逐渐

关于共轭效应的介绍

  “共轭效应是稳定的”是有机化学的最基本原理之一。但是,自30年代起,键长平均化,4N+2芳香性理论,苯环D6h构架的起因,分子的构象和共轭效应的因果关系,π-电子离域的结构效应等已经受到了广泛的质疑。其中,最引人注目的是Vollhardt等合成了中心苯环具有环己三烯几何特征的亚苯类化合物,Sta

什么是同共轭效应?

  又称p轨道与p轨道的σ型重叠。甲基以上的烷基,除有超共轭效应外,还可能产生同共轭效应。所有同共轭效应,原是指β碳原子上的C-H键与邻近的π键间的相互作用。大量的化学活性和电子光谱的数据表明,在丙烯基离子和类似的烯羰基中,存在一种特殊的p-π或π-π共轭现象,即所谓同共轭效应:  在丙烯基离子中是

共轭双键的概念

共轭双键体系即双键和单键交替的分子结构产生共轭效应。共轭效应的特点是化学键的极化作用可以沿共轭体系传递得很远。例如:共轭的结果是电子的离域,共轭体系内单键变短而双键变长,单双键长度差别缩小乃至消失。这样的体系比较稳定。如苯分子中六个碳-碳都是1.39A,而普通的碳-碳双键的键长为1.34A,碳-碳单

共轭二烯烃的应用

以丁二烯和异戊二烯为代表的碳四及碳五馏分用途越来越广泛。丁二烯是C4馏分中最重要的组分之一,在石油化工烯烃原料中的地位仅次于乙烯和丙烯。C5馏分中最具有利用价值的是异戊二烯、间戊二烯、和环戊二烯三种共轭二烯烃,其中异戊二烯是主要产品之一。作为典型的共轭二烯烃,丁二烯和异戊二烯是合成橡胶的主要原料单体

苏州纳米所印刷碳纳米管晶体管与CMOS电路研究获进展

  由于碳纳米管具有独特的电学性能、机械性能、优越的物理和化学稳定性以及容易墨水化,使得碳纳米管成为印刷薄膜晶体管,尤其是印刷柔性薄膜晶体管最理想的半导体材料之一。尽管半导体碳纳米纯化技术已日趋成熟,但高纯度半导体碳纳米管的可印刷墨水批量化制备、碳纳米管的准确定位和高性能n型印刷碳纳米管晶体管的构建

新型茚并四酮类可聚合小分子受体设计研究获进展

广东省科学院化工研究所研究员曾炜团队联合深圳大学教授杨楚罗和湘潭大学副教授肖曼军设计开发了新型茚并四酮(ITO)类可聚合小分子受体并以此制备了高效的全聚合物太阳电池。相关成果近日发表于《材料化学杂志》(Journal of Materials Chemistry C)。研究设计思路及内容概述。研究团

科学家制备出稳定高效有机纳滤膜

  国家纳米科学中心唐智勇和李连山研究团队提出,通过表面引发聚合的方法制出共轭微孔聚合物滤膜(CMP),实现稳定高效有机纳滤膜的制备。该成果于7月24日凌晨在线发表于《自然—化学》。  据介绍,传统分离纯化过程主要依赖高能耗基于热的过程,例如蒸馏、精馏等。化工工业中用于分离和纯化的能源消耗占据了全部

国家纳米科学中心唐智勇和李连山:稳定高效有机纳滤膜

  国家纳米科学中心唐智勇和李连山研究团队提出,通过表面引发聚合的方法制出共轭微孔聚合物滤膜(CMP),实现稳定高效有机纳滤膜的制备。该成果于7月24日凌晨在线发表于《自然—化学》。  据介绍,传统分离纯化过程主要依赖高能耗基于热的过程,例如蒸馏、精馏等。化工工业中用于分离和纯化的能源消耗占据了全部

国科大在交替共轭聚物的室温精准合成研究获进展

  交替共轭聚合物具有化学结构易于修饰、溶液可制备、能带及光谱可调节等优势,在有机光电子领域具有应用前景。目前,其制备方法主要为热活化Stille、Suzuki及直接芳基化等交叉偶联聚合方式。但该类合成方法存在合成重现性差、材料存在结构缺陷等问题,限制了共轭聚合物材料的性能和应用。  近期,中国科学

化学所新型近红外pi分子材料设计及应用获进展

  新型有机pi-分子材料的设计及其在有机场效应晶体管和有机太阳能电池中的应用是有机电子学的重要研究内容。近红外pi-分子材料具有宽吸收光谱和低能量带隙的特点,在光电器件中具有独特的性能。在中国科学院战略性B类先导科技专项支持下,中科院化学研究所有机固体院重点实验室研究员李韦伟课题组研究人员发展了一

三元聚合物锂离子电池的性能特点

三元聚合物锂离子电池:正极材料使用镍钴锰酸锂(Li(NiCoMn)O2)三元正极材料的锂离子电池,特指的是正极是三元,负极是石墨“三元动力锂电池”。而另一种正极是三元,负极是钛酸锂的,则通常被称为“钛酸锂”,不属于普通所说的“三元材料。”三元锂离子电池能量密度高,循环性能好于正常钻酸锂。目前,随着配

聚合物锂电池和锂电池的性能差异

1、原材料不同,锂离子电池的原材料为电解液(液体或胶体);聚合物锂电池的原材料为电解质有高分子电解质(固态或胶态)和有机电解液。2、安全性方面不同,锂离子电池在高温高压的环境中简单爆破;聚合物锂电池选用铝塑膜做外壳,当内部选用有机电解质时,即便液体很热也不爆破。3、塑形不同,聚合物电池能够做到薄形化