宁波材料所等在sp2碳共轭有机框架材料构筑方面获进展

二维共价有机框架(2D COFs)聚合物作为新一代有机半导体材料,具有可调的光电性质、开放的纳米孔道和丰富的活性位点,在光电催化、能源转换和有机电子等领域展现出应用前景。特别是碳碳双键连接的共价有机框架聚合物(sp2c-COFs)凭借拓展的π共轭、优异的稳定性和高载流子迁移率等特性,成为COFs领域研究前沿方向。然而,有限的成键化学、较高的反应势垒和较差的可逆性,导致sp2c-COFs合成困难并限制了其应用和发展。 中国科学院宁波材料技术与工程研究所研究员张涛带领的界面功能高分子材料团队,对sp2c-COFs材料的化学构筑策略、界面合成方法和前沿应用开展了研究。近日,该团队提出了噻二唑介导的羟醛缩聚反应用于构建噻二唑桥联的sp2c-COF(sp2c-COF-ST)。得益于全共轭的骨架和缺电的噻二唑内核,该工作所合成的sp2c-COF-ST表现出优异的稳定性和光电化学性能。例如,sp2c-COF-ST在强酸和强碱(12 M ......阅读全文

共轭体系的共轭效应介绍

  在单烯烃中碳碳双键上的π电子的运动范围,局限在两个碳原子之间,称为定域运动。在双键单键双键共轭的体系,如1,3-丁二烯分子中4个碳原子上的π电子的运动范围,已不局限于两个碳原子之间,而是在4个碳原子的分子轨道中运动,称为离域现象。π电子的离域现象使得电子云的密度分布有所改变,内能降低,分子更趋于

什么是共轭效应?

  共轭效应 (conjugated effect) ,又称离域效应,是指共轭体系中由于原子间的相互影响而使体系内的π电子(或p电子)分布发生变化的一种电子效应。凡共轭体系上的取代基能降低体系的π电子云密度,则这些基团有吸电子共轭效应,用-C表示,如-COOH,-CHO,-COR;凡共轭体系上的取代

共轭效应的影响

所谓共轭效应,是指在分子中形成离域的pai键,使电子能在整个空间运动,从而降低了能量,使结构更稳定。对于一个产生共轭结构的反应,由于产物能量更低,会使得这个方向反应的趋势更大,另外就是对化学键性质的改变,例如在CH2=CH-CH=CH2中,四个碳是共轭结构,从而使得键长平均化,第二个C-C键变短,类

什么是共轭效应?

在单烯烃中碳碳双键上的π电子的运动范围,局限在两个碳原子之间,称为定域运动。在双键单键双键共轭的体系,如1,3-丁二烯分子中4个碳原子上的π电子的运动范围,已不局限于两个碳原子之间,而是在4个碳原子的分子轨道中运动,称为离域现象。π电子的离域现象使得电子云的密度分布有所改变,内能降低,分子更趋于稳定

什么是共轭效应

共轭效应又称离域效应,是指共轭体系中由于原子间的相互影响而使体系内的π电子 (或p电子)分布发生变化的一种电子效应称为共轭效应。共轭体系能降低体系π电子云密度的基团有吸电子的共轭效应,能增高共轭体系π电子云密度的基团有给电子的共轭效应。单双建交替出现的体系或双键碳的相邻原子上有p轨道的体系均为共轭体

研究实现单晶态sp2碳共轭有机框架聚合物的精准构筑

近期,中国科学院宁波材料技术与工程研究所提出了亚胺(C=N)到烯烃(C=C)连接键原位转换策略,实现了单晶态sp2-碳共轭有机框架聚合物的精准构筑,有望推动新一代具有二维/三维拓扑结构的有机半导体材料的研制工作。这类材料在光催化、化学生物传感器、有机光电子器件等领域展现出应用潜力。1月6日,相关研究

宁波材料所等在sp2碳共轭有机框架材料构筑方面获进展

  二维共价有机框架(2D COFs)聚合物作为新一代有机半导体材料,具有可调的光电性质、开放的纳米孔道和丰富的活性位点,在光电催化、能源转换和有机电子等领域展现出应用前景。特别是碳碳双键连接的共价有机框架聚合物(sp2c-COFs)凭借拓展的π共轭、优异的稳定性和高载流子迁移率等特性,成为COFs

共轭二烯烃的应用

以丁二烯和异戊二烯为代表的碳四及碳五馏分用途越来越广泛。丁二烯是C4馏分中最重要的组分之一,在石油化工烯烃原料中的地位仅次于乙烯和丙烯。C5馏分中最具有利用价值的是异戊二烯、间戊二烯、和环戊二烯三种共轭二烯烃,其中异戊二烯是主要产品之一。作为典型的共轭二烯烃,丁二烯和异戊二烯是合成橡胶的主要原料单体

关于共轭效应的介绍

  “共轭效应是稳定的”是有机化学的最基本原理之一。但是,自30年代起,键长平均化,4N+2芳香性理论,苯环D6h构架的起因,分子的构象和共轭效应的因果关系,π-电子离域的结构效应等已经受到了广泛的质疑。其中,最引人注目的是Vollhardt等合成了中心苯环具有环己三烯几何特征的亚苯类化合物,Sta

什么是同共轭效应?

  又称p轨道与p轨道的σ型重叠。甲基以上的烷基,除有超共轭效应外,还可能产生同共轭效应。所有同共轭效应,原是指β碳原子上的C-H键与邻近的π键间的相互作用。大量的化学活性和电子光谱的数据表明,在丙烯基离子和类似的烯羰基中,存在一种特殊的p-π或π-π共轭现象,即所谓同共轭效应:  在丙烯基离子中是

共轭双键的概念

共轭双键体系即双键和单键交替的分子结构产生共轭效应。共轭效应的特点是化学键的极化作用可以沿共轭体系传递得很远。例如:共轭的结果是电子的离域,共轭体系内单键变短而双键变长,单双键长度差别缩小乃至消失。这样的体系比较稳定。如苯分子中六个碳-碳都是1.39A,而普通的碳-碳双键的键长为1.34A,碳-碳单

简述共轭体系的特点

  在共轭体系中,虽然各原子间电子云密度不完全相同,但由于电子离域,使得单双键的差别减小,键长有趋于平均化的倾向。共轭体系越长,单双键差别越小。另外,由于电子离域作用,共轭体系能量降低,因而共轭体系比非共轭体系更加稳定。这可以从它们的氢化热的数据得到证明。  CH3CH=CHCH=CH2+2H2 —

共轭亚油酸的主要结构

共轭亚油酸是一系列碳原子数为18,含有共轭双键(-C=C-C=C-)的必需脂肪酸亚油酸的多种几何和位置异构体混合物的总称。共轭亚油酸的双键在碳链上有多种位置排列方式,共轭双键起始于羧基端的第8、9、10、11位碳原子。其主要位置异构有四种:8,10-、9,11-、10,12-、11,13-,由于共轭

共轭亚油酸的基本简介

共轭亚油酸(Conjugated linoleic acid,以下简称CLA)是亚油酸的所有立体和位置异构体混合物的总称,可以看作是亚油酸的次生衍生物,分子式为C17H31COOH。共轭亚油酸的双键可位于7和9,8和10,9和11,10和12,11和13,12和14位置上,其中每个双键又有顺式(ci

共轭碱单分子消除反应

反应物先与碱作用,失去β氢原子,生成反应物的共轭碱碳负离子,然后从这个碳负离子失去离去基团并生成π键。在生成π键的步骤中只有共轭碱碳负离子参加。 共轭碱单分子消除反应(E1CB)也分两步进行,反应速率不仅与反应物浓度成正比,也与碱的浓度有关,其关系较复杂,在多数情况下也成正比。一般说来,只有β碳原子

正常共轭效应的原理介绍

  又称π-π共轭。是指两个以上双键(或叁键)以单键相联结时所发生的π电子的离位作用。C.K.英戈尔德称这种效应为中介效应,并且认为,共轭体系中这种电子的位移是由有关各原子的电负性和p轨道的大小(或主量子数)决定的。Y原子的电负性和它的p轨道半径愈大,则它吸引π电子的能力也愈大,愈有利于基团-X=Y

关于共轭双键的简介

  在有机化合物分子结构中单键与双键相间的情况称为共轭双键。有机化合物分子结构中由一个单键隔开的两个双键。以C=C-C=C表示。  含有共轭双键的分子比含孤立双键的分子较为稳定,能量较小,共轭双键中单键与双键的键长趋于平均化。

共轭体系的基本特点

在共轭体系中,虽然各原子间电子云密度不完全相同,但由于电子离域,使得单双键的差别减小,键长有趋于平均化的倾向。共轭体系越长,单双键差别越小。另外,由于电子离域作用,共轭体系能量降低,因而共轭体系比非共轭体系更加稳定。这可以从它们的氢化热的数据得到证明。CH3CH=CHCH=CH2+2H2 ——> C

关于共轭亚油酸的简介

  共轭亚油酸(Conjugated linoleic acid,以下简称CLA)是亚油酸的所有立体和位置异构体混合物的总称,可以看作是亚油酸的次生衍生物,分子式为C17H31COOH。共轭亚油酸的双键可位于7和9,8和10,9和11,10和12,11和13,12和14位置上,其中每个双键又有顺式(

共轭双键的反应概念

含活泼双键的化合物(亲双烯体)与含共轭双键的化合物(双烯体)之间发生1,4-加成生成六元环状化合物的反应,称为Diels-Alder反应,也称双烯合成 。反应过程(以1,3-丁二烯与乙烯间的反应为例)此反应为经环状过渡态进行的周环反应,反应过程中旧键断裂与新键形成协同进行。其反应机理以1,3-丁二烯

关于共轭效应的特点介绍

  沿共轭体系传递不受距离的限制。  共轭效应,由于形成共轭π键而引起的分子性质的改变叫做共轭效应。共轭效应主要表现在两个方面。  ①共轭能:形成共轭π键的结果使体系的能量降低,分子稳定。例如CH2=CH—CH=CH2共轭分子,由于π键与π键的相互作用,使分子的总能量降低了,也就是说,CH2=CH—

关于共轭双键的概述

  共轭双键体系即双键和单键交替的分子结构产生共轭效应。共轭效应的特点是化学键的极化作用可以沿共轭体系传递得很远。例如:共轭的结果是电子的离域,共轭体系内单键变短而双键变长,单双键长度差别缩小乃至消失。这样的体系比较稳定。如苯分子中六个碳-碳都是1.39A,而普通的碳-碳双键的键长为1.34A,碳-

共轭体系的相关介绍

  一般形成共轭π键必须满足两个条件:共轭的原子必须同在一个平面上, 并且每个原子可以提供一个彼此平行的p轨道;总的π电子数小于参与形成离域π键的p轨道数的2倍。但有的实验数据表明, 有些满足这两个条件的分子体系并不一定能形成离域π键而出现共轭体系所应有的性质。  共轭效应对物质的电性、颜色、酸碱性

共轭二烯烃的双烯合成

双烯合成又称狄尔斯-阿尔德(Diels-Alder反应)。共轭二烯烃和某些具有碳碳双键、三键的不饱和化合物进行1,4一加成,生成环状化合物的反应称为双烯合成反应。狄尔斯一阿尔德反应是协同反应,即旧键的断裂和新键的形成是相互协调地在同一步骤中完成的。在光照或加热的条件下,反应物分子彼此靠近,互相作用,

共轭体系的基本信息

共轭体系是能形成共轭π键的体系。一般地,多个原子上的相互平行的p轨道,连贯重叠在一起构成一个整体, p电子在多个原子间运动, 产生的和普通两原子间π键不同的键称为离域π键 (也称作共轭π键, 大π键)。在整个共轭体系中垂直于原子实和σ键构成的平面型骨架的p轨道上的这些电子,在整个体系中运动, 使得体

共轭双键的基本信息

在有机化合物分子结构中单键与双键相间的情况称为共轭双键。有机化合物分子结构中由一个单键隔开的两个双键。以C=C-C=C表示。含有共轭双键的分子比含孤立双键的分子较为稳定,能量较小,共轭双键中单键与双键的键长趋于平均化。

共轭二烯烃的基本信息

共轭二烯烃是含有两个碳碳双键,并且两个双键被一个单键隔开,即含有体系(共轭体系)的二烯烃。最简单的共轭二烯烃是1,3-丁二烯。共轭二烯烃相对于累积二烯烃来说,更加稳定。

共轭亚油酸的基本信息

共轭亚油酸是一系列碳原子数为18,含有共轭双键(-C=C-C=C-)的必需脂肪酸亚油酸的多种几何和位置异构体混合物的总称。共轭亚油酸的双键在碳链上有多种位置排列方式,共轭双键起始于羧基端的第8、9、10、11位碳原子。其主要位置异构有四种:8,10-、9,11-、10,12-、11,13-,由于共轭

关于共轭体系的基本介绍

  共轭体系是能形成共轭π键的体系。一般地,多个原子上的相互平行的p轨道,连贯重叠在一起构成一个整体, p电子在多个原子间运动, 产生的和普通两原子间π键不同的键称为离域π键 (也称作共轭π键, 大π键)。  在整个共轭体系中垂直于原子实和σ键构成的平面型骨架的p轨道上的这些电子,在整个体系中运动,

简述共轭体系的形成条件

  (1)分子中参与共轭的原子处于同一平面上 通过讨论1,3一丁二烯的分子结构可以看出,共轭体系中各原子必须在同一平面上。  (2)P轨道互相平行每个原子必须有一个垂直于该平面的P轨道。  (3)P电子数小于p轨道的2倍若P电子数等于P轨道的2倍,则轨道全充满,就不能形成共价键,也就无法形成共轭。