研究实现同层超薄样品超分辨光镜电镜关联成像
蛋白质等分子在细胞中的特定位置组装成蛋白质机器进而发挥生物学功能,因此研究蛋白质等分子在细胞中的精确定位对于揭示蛋白质机器的组装和分子机制至关重要。电子显微镜具有亚纳米尺度的空间分辨率,是生命科学领域中不可缺少的研究工具。然而在电镜图像中定位目标蛋白具有很大的挑战。 2019年10月14日,中国科学院生物物理研究所徐涛院士课题组与徐平勇课题组合作,在Nature Methods上发表了题为“mEosEM withstands osmium staining and Epon embedding for super-resolution CLEM”的研究论文。他们发展了第一个常规电镜制样后保持荧光的光转化荧光蛋白,首次实现了Epon后固定的同层超薄样品的超分辨光镜-电镜关联成像,极大地促进了超分辨光镜和电镜成像领域的发展,有望带来生物学中的广泛应用。......阅读全文
研究实现同层超薄样品超分辨光镜电镜关联成像
蛋白质等分子在细胞中的特定位置组装成蛋白质机器进而发挥生物学功能,因此研究蛋白质等分子在细胞中的精确定位对于揭示蛋白质机器的组装和分子机制至关重要。电子显微镜具有亚纳米尺度的空间分辨率,是生命科学领域中不可缺少的研究工具。然而在电镜图像中定位目标蛋白具有很大的挑战。 2019年10月14日,中
首次实现同层超薄样品的超分辨光镜电镜关联成像
10月14日,中国科学院生物物理研究所徐涛课题组与徐平勇课题组合作,在Nature Methods上发表了题为mEosEM withstands osmium staining and Epon embedding for super-resolution CLEM 的研究论文。他们发展了第一个
Nature-Methods:新型光片超分辨显微成像实现精细观测
华中科技大学课题组3月12日在Nature Methods在线发表研究论文,提出了一种基于深度学习的超分辨荧光显微镜,实现对活细胞的精细动态和相互作用进行快速、三维、长时程地观测。 细胞的稳态离不开内部多种亚细胞结构的精确分工和协同合作,洞悉细胞内细胞器/蛋白分子的精密运转是一项重要的生命科学
超分辨率显微镜实现自由运动神经环路高分辨成像
提到在体小动物神经成像,人们自然会联想到钙离子荧光探针局部注射或遗传钙指示剂(如Gcamp家族)结合双/三光子显微镜的经典在体成像组合。 随着基因改造技术的突飞猛进,通过病毒转染和转基因技术,在神经元内源性表达“基因编码类钙指示剂(genetically encoded calcium ind
光控荧光染料的超分辨成像研究获新进展
近日,华东理工大学费林加诺贝尔奖科学家联合研究中心与中科院上海药物研究所、国家蛋白质中心、美国得克萨斯大学奥斯丁分校以及英国巴斯大学合作,在酶激活型光控荧光染料的超分辨成像研究中取得重要进展,研究成果以“光致变色荧光探针策略实现生物标志物超分辨成像”为题发表于《美国化学会志》。 酶是人体不可
冷冻电镜技术介绍
2017诺贝尔化学奖2017年诺贝尔化学奖授予了理查德·亨德森(Richard Henderson)、约阿希姆·弗兰克(Joachim Frank)和雅克·杜博歇(Jacques Dubochet),表彰他们在冷冻电镜技术的发展上做出的卓越贡献。 分辨率对比 他们将冷冻电镜技术简化,并将其应用在生
推动大规模设备更新,蔡司显微镜提供全套解决方案
近日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》的通知提到,推动大规模设备更新和消费品以旧换新是加快构建新发展格局、推动高质量发展的重要举措,将有力促进投资和消费,既利当前、更利长远。并表示,至2027年,工业、教育、医疗等领域设备投资规模较2023年增长25%以上。临床诊断与研究蔡司
徕卡:探索显微科技极限-提供生命研究新工具
分析测试百科网讯 中国细胞生物学学会2021年全国学术大会在重庆召开。来自细胞生物学相关领域的2000余位专家、学者齐聚一堂,交流学科发展,更有众多企业,带来了领域前沿的创新技术。分析测试百科网采访了徕卡生命科学应用经理方策博士,他为我们介绍了徕卡在宽场、共聚焦、纳米显微镜、光电联用等多款创新产
激光共聚焦显微镜、扫描电镜、原子力显微镜的区别和关...
激光共聚焦显微镜、扫描电镜、原子力显微镜的区别和关联成像进展激光共聚焦显微镜,扫描电镜,原子力显微镜是目前科研领域用的比较多的成像系统。近年来,随着技术的不断发展,各种系统关联应用成为一个趋势,本文简单整理一下各种显微镜的区别及关联进展情况。一、极限分辨率不同, 缘于放大信号源的差异激光共聚焦:极限
透射电子显微镜
1、基本原理在光学显微镜下无法看清小于0.2µm的细微结构,这些结构称为亚显微结构(submicroscopic structures)或超微结构(ultramicroscopic structures;ultrastructures)。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨
透射电子显微镜
1、基本原理 在光学显微镜下无法看清小于0.2µm的细微结构,这些结构称为亚显微结构(submicroscopic structures)或超微结构(ultramicroscopic structures;ultrastructures)。要想看清这些结构,就必须选择波长更短的光源,
大连化物所实现多种细胞器动态超分辨成像
近日,我所分子探针与荧光成像研究组(1818组)徐兆超研究员团队发展了聚集体调控探针,解决了以往蛋白标签荧光探针在超分辨成像应用中缺乏对多种细胞器通用性标记的问题。该探针基于遗传编码技术,实现了细胞内多种细胞器选择性荧光识别的广谱应用性,并且实现了细胞器亚结构的动态超分辨成像,进而揭示了多种未
季铵哌嗪如何实现荧光超分辨率成像?
近年来,先进的荧光成像技术得到了快速的发展,但是与成像技术的治疗进化相比,具有足够亮度和光稳定性的染料的发展仍然缓慢,如单分子定位显微镜(SMLM),其分辨率超过了衍射极限。但是荧光团亮度不足成为了超分辨显微镜发展的一大瓶颈,这也对体内细胞动力学研究构成了重要的限制。比如罗丹明染料被广泛应用,但
中科院生物物理所开发新型冷冻光电关联成像技术
原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500101.shtm4月29日,中国科学院生物物理所蛋白质科学研究平台生物成像中心在学术期刊《通讯-生物学》(Communications Biology)上发表论文,介绍了该团队开发的新型冷冻光电关联成
平铺光片显微镜如何实现均一高分辨率成像
随着组织透明化技术和光片荧光显微技术的发展,3D荧光成像技术实现了快速获取3D组织信息的能力。光片显微镜由于其独特的3D成像能力以及更快的成像速度逐渐成为生命科学研究中3D荧光成像的强有力工具。光片显微镜的实现方式是将激发光片限制在探测焦平面内,使得激发光对样品的光漂白和光毒性降到最低,具有高的三维
连续断层3D重构中的超薄切片制备
当需要以纳米级分辨率观察样品超微结构时,科学家通常借助电子显微镜(观察表面结构的扫描电镜 SEM 和观察内部结构的透射电镜 TEM)——它们是当前科研界可使用的最大显微成像工具。电镜成像要求对样品进行通常 20-150 nm的超薄切片,使用超薄切片机切割的切片厚度薄、表面平整、光滑且无人为干
用普通共聚焦显微镜实现超分辨率单分子荧光成像
传统的细胞及其内部分子显微观察通常使用荧光染料,然后再用不同分辨率的显微术照亮单个分子和与其互动的其他物质。如下图所示,普通共聚焦显微镜和超分辨率显微镜的精准度差异一目了然。(普通共聚焦显微镜观察图,比例尺10μm。图片来自发表文章DOI: 10.1038/s41467-017-00688-0)(随
研究攻克超分辨长时程成像难题
近日,哈尔滨工业大学李浩宇教授团队在生物医学超分辨显微成像技术领域取得突破性进展。针对目前活体细胞超分辨成像领域中光子效率不足的难题,团队提出一种基于无监督学习的自启发去噪方法,通过无监督深度学习技术,在无需大训练集和高信噪比真值图像的条件下,将光子效率提升了两个数量级,实现了在低光照条件下的温和、
绘制全细胞神经介观图谱的光学多层干涉断层成像
大脑的神经回路是极其复杂的网络,包含数十亿个神经元细胞,这些细胞间又存在着数以百亿计的连接。如果只了解其中单个分子或单个神经细胞的工作机理而不了解多个神经元细胞之间连接之后的网络结构和集体行为方式,则无法理解大脑复杂且高等的功能行为,也无法解释很多脑部疾病的致病机理。目前成像技术众多,但仍然缺乏
一种绘制全细胞神经介观图谱的光学多层干涉成像方法
大脑的神经回路是极其复杂的网络,包含数十亿个神经元细胞,这些细胞间又存在着数以百亿计的连接。如果只了解其中单个分子或单个神经细胞的工作机理而不了解多个神经元细胞之间连接之后的网络结构和集体行为方式,则无法理解大脑复杂且高等的功能行为,也无法解释很多脑部疾病的致病机理。目前成像技术众多,但仍然缺乏
时隔五年共襄盛举,第十一次华北五省市电镜会延安召开
2023年7月22日,由华北五省电子显微镜学会和北京理化分析测试技术学会主办的“第十一次华北五省市电子显微学研讨会及第十三届全国实验室协作服务交流会”在陕西省延安市荣华大厦酒店举办,会议旨在推动华北五省市电子显微分析技术的发展,促进电子显微分析工作者的学术交流,以及分析测试实验室面向社会开放服务,加
连续断层3D重构中的超薄切片制备
当需要以纳米级分辨率观察样品超微结构时,科学家通常借助电子显微镜(观察表面结构的扫描电镜 SEM 和观察内部结构的透射电镜 TEM)——它们是当前科研界可使用的最大显微成像工具。电镜成像要求对样品进行通常 20-150 nm的超薄切片,使用超薄切片机切割的切片厚度薄、表面平整、光滑且无人为干扰因
【CSCB-2023云探展回顾】足不出户,-带您参观徕卡显微展台!
2023年4月10-14日,“中国细胞生物学学会第十八次会员代表大会暨 2023 年全国学术大会•苏州”在江苏省苏州市国际博览中心举办。本次会议邀请众多细胞生物学专家,紧密围绕细胞生物学及其相关领域基础研究、前沿技术、临床应用、产业发展等方面,打造近30场主题论坛及专题活动,充分展示细胞生物学及
暗场显微结合微球-实现微结构超分辨显微成像
在光学成像领域中,由于受到衍射极限的限制,常规成像分辨率难以突破200nm。生物医学、集成电路等领域对提高成像分辨率有迫切要求,如何实现更高成像分辨率成为近年来的热门研究方向之一。 受自然界微滴可提高成像分辨率的启发,2011年科学家提出将直径在微米级的介质微球直接放置于待测样品表面,在普通白
新技术实现溶酶体功能超分辨荧光成像“精准定量”
近日,中国科学院大连化学物理研究所研究员徐兆超团队发展双色单分子闪烁比率成像技术(2C-SMBR),在单溶酶体水平同步实现纳米级结构成像与腔内pH准确定量。相关成果发表在《德国应用化学》。溶酶体作为细胞的“化工厂”与“信号枢纽”,其功能高度依赖于腔内pH的精确调控。传统观点认为,溶酶体是均质的酸性细
新一代Nanoimager可轻松实现超分辨荧光成像
近年来,随着活细胞体系单分子荧光成像技术的发展,膜蛋白单分子研究,特别是受体动力学的研究,已成为目前单分子研究领域中最活跃的研究方向之一。近几年发展起来的超分辨成像技术因其能够突破光学衍射极限,而比传统光学显微镜具有更高的分辨率和更高的定位精度。英国Oxford Nanoimaging公司最新推
超细内窥镜动态超分辨成像方面研究新进展
浙江大学及之江实验室联合团队的杨青教授、刘旭教授在光场经复杂动态介质中的快速恢复及超分辨成像方面取得进展。研究结果以“单根多模光纤用于体内光场编码内窥镜成像(Single multimode fibre for in vivo light-field-encoded endoscopic ima
推动电镜技术新发展-看2020北京电镜年会
分析测试百科网讯 2020年12月19日,由北京理化分析测试技术学会电镜专业委员会主办的2020年度北京市电子显微学年会隆重举行。本次会议旨在推动北京及周边省市广大电子显微学的学术及技术水平,促进电子显微学工作者在材料科学、生命科学等领域的应用、发展和交流。本次会议共有近200人出席、参与。分析
透射电子显微镜的原理与演示
实验一 透射电子显微镜 的原理与演示 解剖、观察和分析历来是生物学研究的基本手段。用于细胞解剖观察的主要工具就是显微镜,它是我们观察细胞形态最常用的工具。但其分辨率的最小数值不会小于0.2mm(紫外光显微镜的分辨率也只能达到0.1mm), 这一数值是光学显微镜分辨率的极限。限制显微镜分辨率的关键因素
Nat.-Methods|新型显微镜实现纳米可及性基因组超分辨成像
美国霍华德休斯医学研究所Zhe Liu、加州大学伯克利分校Robert Tjian等研究人员合作,开发了用于可及性基因组超分辨成像的新型显微镜。 这一研究成果于2020年3月16日在线发表在《自然—方法学》上。 为了在纳米尺度上对可及性基因组进行原位成像,研究人员开发了转座酶可及性染色质光激