Antpedia LOGO WIKI资讯

现代分析技术与应用

现代分析技术与应用Modern Analysis Technology and Application 现代分析技术是测定物质的组成、结构和研究一些物理、化学、生命、环境等领域科学问题的重要手段。通过本课程的教学,主要向学生讲授常用现代分析技术的基本原理、特点、及其在科学研究及人们关注的社会焦点领域的应用;了解常见分析仪器的基本结构,为学生今后从事科学研究和工作打下必要的理论基础。现代分析技术的内容非常广泛,既是分析测试方法又是开展科学研究重要手段,本课程的教学内容主要包括色谱及联机技术、光谱技术、波谱技术、显微技术、表面分析技术、物相分析技术和核分析技术等以及这些技术在生命科学、环境科学、材料科学、化学、食品安全、社会公共安全等领域的应用。 1. 绪论,现代分析技术在各领域的应用;光谱技术(6学时)2. 色谱、质谱及联机技术的应用(4学时)3. 核磁共振技术及应用(2学时)4. 元素分析技术及应用(4学时)5. 显微技术及......阅读全文

软X射线能谱仪

本文描述了一个用于托卡马克杂质谱线精细测量的高分辨软X射线谱仪。谱仪采用Johann型弯晶衍射结构,以多丝正比室作探测器件。其测量范围为2—8keV(1—6),能量分辨为4.1eV(在6.4keV处)。多丝正比室采用阳极丝逐丝读出法,位置读出精度2mm。谱仪配有自动数据记录系统。 

X射线能谱仪简介

能谱仪是利用X射线能谱分析法来对材料微区成分元素种类与含量分析的仪器,常常配合扫描电子显微镜与透射电子显微镜的使用。

X 射线能谱

X 射线能谱( Energy-dispersive X-ray spectroscopy, EDS)是微区成分分析最为常用的一种方法,其物理基础是基于样品的特征 X 射线。当样品原子内层电子被入射电子激发或电离时,会在内层电子处产生一个空缺,原子处于能量较高的激发状态,此时外层电子将向内层跃迁以填补

Si(Li)X射线能谱仪

Si(Li)x射线能谱仪于一九六八午首次应川在电子探针,成为一种x射线微分析的工具。此后,在能量分辨率、计数率和数据分析等方面作了许多改进,目前已经成为电子探针和扫描电镜的一种受欢迎的附件,甚至在透射电子显微镜上也得到应用。

X射线能谱仪应用范围

1、金属材料的相分析、成分分析和夹杂物形态成分的鉴定;2、高分子、陶瓷、混凝土、生物、矿物、纤维等无机或有机固体材料分析;3、可对固体材料的表面涂层、镀层进行分析,如:金属化膜表面镀层的检测;4、金银饰品、宝石首饰的鉴别,考古和文物鉴定,以及刑侦鉴定等领域;5、进行材料表面微区成分的定性和定量分析,

X射线能谱定量分析

随着探头制造技术水平的提高、电子学技术的发展,以及对脉冲处理技术和重叠峰处理方法的改进,能谱定量分析的精度得到不断提高。目前,对原子序数在11~30之间的常用元素,其分析精度大体上可以达到波长谱仪的水平。由于能谱定量分析的方法简单、操作方便,它既能进行大试样的平均成份分析,也能进行微粒、薄板、镀层、

X射线能谱仪的原理介绍

   在许多材料的研究与应用中,需要用到一些特殊的仪器来对各种材料从成分和结构等方面进行分析研究。    其中,X射线能谱仪(XPS)就是常用仪器之一。下面详细介绍一下X射线能谱仪的基本原理、结构、优缺点及应用。    X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法

X射线能谱仪分析的基本原理

X射线能谱仪为扫描电镜附件,其原理为电子枪发射的高能电子由电子光学系统中的两级电磁透镜聚焦成很细的电子束来激发样品室中的样品,从而产生背散射电子、二次电子、俄歇电子、吸收电子、透射电子、X射线和阴极荧光等多种信息。若X射线光子由Si(Li)探测器接收后给出电脉冲讯号,由于X射线光子能量不同(对某一元

X射线能谱岩芯扫描分析技术的研究开发

XRF(X射线荧光光谱分析)岩芯扫描方法,是一种非破坏性的、高效的岩芯元素组成分布的XRF分析测试方法。我们研制的国内第一台XRF岩芯扫描仪将传统的点数据改为线扫描面积型数据,使数据对样品元素组成的变化趋势描述的更加准确,清晰,结合计算机数据分析,可以提供可靠的趋势数据。 

电子探针X射线微区分析能谱仪分析特点

  具有以下优点(与波谱仪相比)  能谱仪探测X射线的效率高。  在同一时间对分析点内所有元素X射线光子的能量进行测定和计数,在几分钟内可得到定性分析结果,而波谱仪只能逐个测量每种元素特征波长。  结构简单,稳定性和重现性都很好(因为无机械传动),不必聚焦,对样品表面无特殊要求,适于粗糙表面分析。