多孔碳负极材料可有效储钾

从河北科技大学获悉,该校经济管理学院材料学院王波教授带领的科研团队与北京航空航天大学王伟教授、剑桥大学郗凯博士等在钾离子电池多孔碳负极材料领域合作取得重要进展,相关研究近日在英国皇家化学学会RSC出版社旗下《材料化学学报》 上发表。图片来源于网络 钾离子电池因储量丰富、价格低廉且具有较低的氧化还原电位等优点,成为能源存储领域的研究热点,有望成为锂离子电池的替代储能系统。然而,由于钾离子半径较大,钾离子电池的循环稳定性和倍率性能较差,严重限制了其进一步的发展。此次研究团队以生物质材料为原料,通过经济高效的低温水热和高温碳化过程,成功制备了具备更高的比表面积和化学稳定性的多孔碳微米管阵列,为钾离子碳负极材料制备提供了新的途径。 据介绍,作为钾离子电池负极材料,多孔碳微米管的形成不仅扩大了层间距,同时有效释放了钾离子嵌入/脱嵌过程当中所产生的轴向和径向应力,显著提高了钾离子电池的倍率性能和循环稳定性。......阅读全文

多孔碳负极材料可有效储钾

  从河北科技大学获悉,该校经济管理学院材料学院王波教授带领的科研团队与北京航空航天大学王伟教授、剑桥大学郗凯博士等在钾离子电池多孔碳负极材料领域合作取得重要进展,相关研究近日在英国皇家化学学会RSC出版社旗下《材料化学学报》 上发表。图片来源于网络  钾离子电池因储量丰富、价格低廉且具有较低的氧化

研究人员开发出多孔碳负极材料储钾

   记者11月27日从河北科技大学获悉,该校经济管理学院材料学院王波教授带领的科研团队与北京航空航天大学王伟教授、剑桥大学郗凯博士等在钾离子电池多孔碳负极材料领域合作取得重要进展,相关研究近日在英国皇家化学学会RSC出版社旗下《材料化学学报》 上发表。  钾离子电池因储量丰富、价格低廉且具有较低的

多孔碳材料的定义

多孔炭材料是有不同尺寸孔结构的炭素材料,其具有高度发达的比表面积和孔隙结构,其孔径大小可从分子大小的超细纳米级微孔到适于微生物活动的微米级细孔,按照国际纯粹与应用化学联合会(IUPAC)的规定,按其孔径的大小可分为微孔(50nm)三种。作为一种新材料,其具有优异的物理化学性质,如导电、导热、耐高温,

多孔碳材料与介孔碳材料有什么不同

根据国际纯粹与应用化学协会(IUPAC)的定义,孔径小于2纳米的称为微孔;孔径大于50纳米的称为大孔;孔径在2到50纳米之间的称为介孔.介孔材料是一种孔径介于微孔与大孔之间的具有巨大表面积和三维孔道结构的新型材料。有序介孔材料是指孔管道的排列规整有规律的介孔材料。

关于锂电池碳基材料多孔碳材料的介绍

  近年来,对多孔碳材料的关注越来越多,有关多孔碳材料报道也持续增多,而对于研究人员而言,多孔碳材料及材料的应用具有研究价值。其原因在于:首先,多孔碳材料具有较好的生物相容性、尤其在无氧条件下具有良好的化学稳定性、低密度、高热导率、高导电率和高机械强度等优势。并且,相对于多孔硅,多孔碳材料在水中具有

锂电池碳负极材料介绍

碳负极材料:锂电池已经实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。

我国科学家研发出高氮掺杂的多孔微晶碳钾电负极材料

  近日,中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心研究员唐永炳及其团队联合香港城市大学教授李振声成功研发出高氮掺杂的多孔微晶碳纳米材料,其作为钾离子电池负极表现出高容量和长循环特性。相关研究成果"Ultrahigh Nitrogen Doping of Carbon Nanosheet

锂电负极材料纳米碳管的简介

  纳米碳管是近年来发现的一种新型碳晶体材料,它是一种直径几纳米至几十纳米,长度为几十纳米至几十微米的中空管,其性能如下:  纳米管的制备有直流电弧法和催化热解法。  催化热法是将20%H2+80%CH4混合气体在Ni+Al2O3的催化剂颗粒上于500℃热解,将热解的样品研磨后,加入热硝酸(80℃)

碳达峰、碳中和时代的有机多孔材料新机遇

  11月4日至8日,由我校、武汉工程大学和武汉大学主办的“第四届全国有机多孔材料学术研讨会”在武汉召开。中国科学院院士于吉红、我校副校长解孝林参加开幕式。  开幕式由化学与化工学院副院长、大会主席谭必恩主持。化学与化工学院院长朱锦涛致开幕辞。他回顾了有机多孔材料的发展历程,提出面对“碳中和、碳达峰

锂电负极材料纳米碳管的功能介绍

  纳米负极材料主要是希望利用材料的纳米特性,减少充放电过程中体积膨胀和收缩对结构的影响,从而改进循环性能。实际应用表明:纳米特性的有效利用可改进这些负极材料的循环性能,然而离实际应用还有一段距离。关键原因是纳米粒子随循环的进行而逐渐发生结合,从而又失去了纳米粒子特有的性能,导致结构被破坏,可逆容量

锂电池碳负极材料的相关介绍

  碳负极锂离子电池在安全和循环寿命方面显示出较好的性能,并且碳材料价廉、无毒,目前商品锂离子电池广泛采用碳负极材料。近年来随着对碳材料研究工作的不断深入,已经发现通过对石墨和各类碳材料进行表面改性和结构调整,或使石墨部分无序化,或在各类碳材料中形成纳米级的孔、洞和通道等结构,锂在其中的嵌入-脱嵌不

锂离子电池碳负极材料的特点

锂离子电池碳负极材料的特点如下:1. 高比容量:碳负极材料具有较高的比表面积,能够提供更多的反应表面,因此具有较高的锂嵌入/脱嵌容量。天然石墨的比容量约为372mAh/g,人工石墨可达到350-360mAh/g,非晶碳可达到250-300mAh/g。2. 循环寿命长:由于碳负极材料与锂之间的化学反应

锂电池非碳负极材料的介绍

  对LixFe2O3、LixWO2、LixMoO2、LixNb2O5等过渡金属氧化物材料研究工作开展比较早,与LixC6嵌入化合物相比,这些材料的比容量较低,因而基本上未能得到实际应用。锡的氧化物(包括氧化亚锡、氧化锡及其混合物)具有一定的可逆储锂能力,储锂容量比石墨材料高得多,可达到500 mA

锂电池碳材料负极的技术缺陷

采用电动车辆取代燃油车辆是解决城市环境污染的最佳选择,其中锂离子动力电池引起了研究者的广泛关注.为了满足电动车辆对车载型离子动力电池的要求,研制安全性高、倍率性能好且长寿命的负极材料是其热点和难点。商业化的锂离子电池负极主要采用碳材料,但以碳做负极的锂电池在应用上仍存在一些弊端:1、过充电时易析出锂

锂离子电池碳负极材料的特点

1. 高比容量:碳负极材料具有较高的比表面积,能够提供更多的反应表面,因此具有较高的锂嵌入/脱嵌容量。天然石墨的比容量约为372mAh/g,人工石墨可达到350-360mAh/g,非晶碳可达到250-300mAh/g。2. 循环寿命长:由于碳负极材料与锂之间的化学反应是可逆的,因此其循环寿命相对较长

分级多孔碳结构作为超级电容器电极材料

  由于碳材料优良的导电性,可裁剪性,价格低廉,它已被广泛研究作为超级电容器的电极材料。几十年来,碳基超级电容器电极的电容一般保持在100和200 F g-1之间。近来,一种被称为分级多孔碳的新型碳材料,其电容超过了300 F g-1,该类材料实现了传统碳材料在超级电容器应用中的新突破。分级多孔碳含

锂离子电池碳负极材料的基本特点

1. 高比容量:碳负极材料具有较高的比表面积,能够提供更多的反应表面,因此具有较高的锂嵌入/脱嵌容量。天然石墨的比容量约为372mAh/g,人工石墨可达到350-360mAh/g,非晶碳可达到250-300mAh/g。2. 循环寿命长:由于碳负极材料与锂之间的化学反应是可逆的,因此其循环寿命相对较长

常用锂离子电池碳负极材料有哪些?

锂离子电池负极材料主要有碳、石墨、硅、锡、钴等,而锂离子电池碳负极材料常见的分类方法包括天然石墨负极材料、人工石墨负极材料、非晶碳负极材料和硅碳复合负极材料等。

非碳锂电池负极材料的性能介绍

含锂过渡金属氮化物是在氮化锂Li3N高离子导体材料(电导率为102·cm-1)的研究基础上发展起来的,可分为反CaF2型和Li3N型两种,代表性的材料分别为Li3-xCoxN和Li7MnN4。Li3-xCoxN属于Li3N型结构锂过渡金属氮化物(其通式为Li3-xMxN,M为Co、Ni、Cu等),该

锂电池的新材料硅碳复合负极材料的介绍

  数码终端产品的大屏幕化、功能多样化后,对电池的续航提出了新的要求。当前锂电材料克容量较低,不能满足终端对电池日益增长的需求。  硅碳复合材料作为未来负极材料的一种,其理论克容量约为4200mAh/g以上,比石墨类负极的372mAh/g高出了10倍有余,其产业化后,将大大提升电池的容量。现在硅碳复

废弃生物质多孔碳电容脱盐电极材料研究取得进展

  近日,中国科学院城市环境研究所郑煜铭团队(污染防治材料与技术研究组)在废弃生物质多孔碳应用于电容脱盐方面取得新进展。该研究揭示了提高碳电极材料石墨氮含量对增强电容脱盐性能的内在机制。  碳材料因储量丰富、环境相容性高,成为电容去离子(Capacitive deionization,CDI)电极材

什么是多孔材料?

多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料,孔洞的边界或表面由支柱或平板构成。多孔材料可表现为细或粗的粉体、压制体、挤出体、片体或块体等形式。其表征通常包括        孔径分布和总孔体积或孔隙度的测定。在某些场合,也需要考察其孔隙形状和流通性,并测定内表面和外表面面积。

锂离子电池负极材料纳米碳管的介绍

  纳米碳管(CNT),管状的纳米级石墨晶体,是单层或多层石墨片围绕中心轴按一定的螺旋角卷曲而成的无缝纳米级管,每层的C是SP2杂化,形成六边形平面的圆柱面。碳纳米管同样也有天然产出的碳晶特性。使纳米碳管成为人们认知的碳原子材料。科学发现自然,自然验证科学。

关于锂电池负极碳材料等的相关研究

  研究工作主要集中在碳材料和具有特殊结构的其它金属氧化物。石墨、软碳、中相碳微球已在国内有开发和研究,硬碳、碳纳米管、巴基球C60等多种碳材料正在被研究中[18][19][20][21][22][23]。日本Honda Researchand Development Co.,Ltd的K.Sato等

锂电非碳负极材料氮化物的相关介绍

  锂过渡金属氮化物具有很好的离子导电性、电子导电性和化学稳定性,用作锂离子电池负极材料,其放电电压通常在1.0V以上。电极的放电比容量、循环性能和充、放电曲线的平稳性因材料的种类不同而存在很大差异。如Li3FeN2用作LIB负极时,放电容量为150mAh/g、放电电位在1.3V(vs Li/Li+

锂电池负极材料涂碳铜箔的性能优势

  1、显著提高电池组使用一致性,大幅降低电池组成本。  · 明显降低电芯动态内阻增幅 ;  · 提高电池组的压差一致性 ;  · 延长电池组寿命 。  2、提高活性材料和集流体的粘接附着力,降低极片制造成本。如:  · 改善使用水性体系的正极材料和集电极的附着力;  · 改善纳米级或亚微米级的正极

煤化所在电池负极用碳及硅/碳材料研发方面获进展

  在加速能源使用形式由化石能源向清洁能源转变的战略背景下,锂离子电池(LIB)凭借其高能量密度、高功率、长循环寿命、较高的工作电压、放电平稳、宽工作温度范围、无记忆效应和安全性能较好等综合优势,在实现环保而高效的能量存储及转化方式方面显得尤为重要。作为锂离子电池的重要组成部分,负极自身的性能直接影

中科大提出合成多孔掺杂碳纳米材料新途径

  日前,中国科学技术大学教授俞书宏和梁海伟团队设计出一种过渡金属盐催化有机小分子碳化的合成新途径,实现了在分子层面可控的宏量合成多孔掺杂碳纳米材料。研究成果发表在7月27日出版的《科学进展》上。  有机小分子因其存在广泛、种类多样、元素丰富,是一种理想的制备碳纳米材料的前驱体。但在高温下,有机小分

锂离子电池负极材料纳米碳管的特性简介

  1.碳纳米管的力学性能  理论和实验研究表明,碳纳米管具有极高的强度,理论计算值为钢的100倍。同时碳纳米管具有极高的韧性,十分柔软,被认为是未来的超级纤维。这里的纳米碳管的力学概念是指,以单个单质特性存在的闭合全同粒子的原子力学性质。  2.碳纳米管的发射性能  单壁碳纳米管的直径通常是几个纳

锂离子电池负极材料纳米碳管的发展历史

  纳米碳管由1991年日本科学家Sumio Iijima发现,具有优良的场发射性能,制作成阴极显示管,储氢材料。我国自制的碳管储氢能力达到4%,居世界领先水平。1992年,科研人员发现碳纳米管随管壁曲卷结构不同而呈现出半导体或良导体的特异导电性;1995年,科学家研究并证实了其优良的场发射性能;1