单原子MNC材料——深入理解ORR电催化剂的双原子活性

单原子M-N-C材料被认为是最有前景的非贵金属ORR催化剂,其活性中心被鉴定为模拟生物卟啉中心的金属-氮配位结构,之前的研究工作表明,具有各种金属中心的M-N-C催化剂遵循Sabatier原理,其中“恰好”的M-O结合强度有助于催化性能的最大化。目前最优的Fe-N-C催化剂位于M-N-C火山型曲线右端,结合能过强,距顶点尚有距离。Fe(III)/Fe(II)氧化还原电位(Eredox)可作为有效的M-O结合能判定指标,提高Eredox即减弱Fe-O结合能,推动Fe基催化剂性能向火山曲线顶端移动。 基于此,中国科学院长春应用化学研究所研究员邢巍、葛君杰联合武汉大学教授陈胜利与上海光源研究员姜政设计了FeCoN5双原子位点,水在该中心上自发解离生成新的FeCoN5OH稳定位点,可调控Fe的d-轨道能级,提升Fe的Eredox。结合DFT理论计算与原位X射线近边吸收光谱(XANES)证实该新型活性位点上的Fe(III)/Fe(I......阅读全文

原子化器

原子化器的功能是提供能量,使试样干燥、蒸发和原子化。入射光束在这里被基态原子吸收,因此也可把它视为“吸收池”。对原子化器的基本要求是:必须具有足够高的原子化效率;必须具有良好的稳定性和重现性;操作简单;低的干扰水平等。常用的原子化器有火焰原子化器和非火焰原子化器。5.2.2.1 火焰原子化器火焰原子

汇原子光谱精英-解原子光谱困扰

  分析测试百科网讯 2018年9月22日,第五届全国原子光谱及相关技术学术会议进入第三日,继前两天精彩报告之后(详情请点击:了解最新进展 共享学术盛宴 看第五届全国原子光谱会议,了解传承与发展 看原子光谱新进展),百科网小编继续为您带来分会场精彩报告,今日报告首先由四川大学段忆翔教授带来。会议现场

原子吸收光谱法特殊原子化技术

  原子吸收光谱法特殊原子化技术能大幅度提高提高测定灵敏度,并扩大原子吸收光谱仪检测法的应用范围。不过它们只在某些特殊情况下进行才显示其价值和特点,因而在应用上有一定的局限性。   1 氢化物原子化法   氢化物发生法是将含砷、锑、锡、硒和铋等的试样转变成气体后进入原子化器的一种方法。它可以提高对这

原子力显微镜为什么是“原子力”

原子力显微镜也是运用了类似的原理。如果我们用一根探针来靠近某个物体的表面,当针尖与表面距离非常小时(一般在几个纳米左右),二者之间会存在一个微弱的相互作用。从图2我们可以看到,针尖与物体表面之间的作用力大小和它们之间的距离直接相关,距离非常近时(一般小于零点几纳米)二者之间的力是相互排斥的,如果它们

原子吸收和原子荧光灯的区别

原子吸收和原子荧光灯的区别? 1. 一般原子吸收的灯电流比较低,一般情况工作电流不会大于10毫安。原子荧光的灯电流较大 2. 原吸,要求发射线光谱带线宽应远小于吸收线带宽,一般为0.0005-0.002nm,越狭越好. 荧光,并不要求发射带线宽越锐越好,而是要求发射线带宽等于或小于特征波长线宽即可,

火焰原子化器的自由原子分布介绍

  自由原子在火焰中的空问分布与火焰类型、燃烧状态和元素性质有关。如图1是三种元素的吸收值沿火焰高度的分布曲线。镁最大吸收值大约在火焰的中部。开始吸收值沿火焰高度的增加而增加,这是由于长时间停留在热的火焰中,产生了大量的镁原子。然而当接近第二反应区时,镁的氧化物明显地开始形成。由于它不吸收所选用波长

原子吸收光谱和原子发射光谱区别

原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。   原 子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基

原子吸收光谱和原子发射光谱区别

      原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。  原子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基态时,称为共振

新型原子滤光器滤波带宽接近原子自然线宽

  超窄带光学滤光可以有效抑制背景光,同时读取微弱的信号光。在激光雷达、大气遥感、激光和量子通信等领域的实践表明,利用吸收、发射及内部能量转换等物理特性的原子滤光是实现超窄带光学滤光的理想方法之一。  原子滤光器能够有效地进行频谱滤波,极大地提高光学信号的探测灵敏度。为了探索超窄带光学滤光在基于原子

原子吸收光谱和原子发射光谱区别

原子吸收光谱和原子发射光谱区别如下:吸收光谱和发射光谱都是线谱,区别在于前者显示黑色线条,而发射光谱显示光谱中的彩色线条。发射光谱:给样品以能量,比如原子发射光谱,原子外层电子由基态到激发态,处于激发态电子不稳定,会以光辐射的形式是放出能量,而回到基态或较低的能级.得到线状光谱。吸收光谱:用一定波长

原子吸收光谱和原子发射光谱区别

  原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。  原 子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基态时,称为共振跃迁。

​ICP原子发射光谱仪火焰原子化法实现原子化的过程

火焰原子化在这过程中,大致分为两个主要阶段:(1)从溶液雾化至蒸发为分子蒸气的过程。主要依赖于雾化器的性能、雾滴大小、溶液性质、火焰温度和溶液的浓度等。(2)从分子蒸气至解离成基态原子的过程。主要依赖于被测物形成分子的键能,同时还与火焰的温度及气氛相关。分子的离解能越低,对离解越有利。就ICP原子发

原子发射光谱仪的火焰原子化法实现原子化分几个阶段?

火焰原子化在这过程中,大致分为两个主要阶段:(1)从溶液雾化至蒸发为分子蒸气的过程。主要依赖于雾化器的性能、雾滴大小、溶液性质、火焰温度和溶液的浓度等。(2)从分子蒸气至解离成基态原子的过程。主要依赖于被测物形成分子的键能,同时还与火焰的温度及气氛相关。分子的离解能越低,对离解越有利。就ICP原子发

比较原子发射光谱,原子吸收光谱和原子荧光光谱的异同

仪器构造方面AES AAS AFS 同属于光谱类仪器 都有光源 进样器 原子化器 检测器 不同处在于AES可以不需要光源 其他两种必须有光源AAS 的光源处于主光路上 AFS光源需要和主光路分离进样器部分 大同小异 采取空压机配合雾化器 或 蠕动泵等方法进样 用以保证样品的连续稳定原子化器部分 AF

原子发射光谱,原子吸收光谱和原子荧光光谱怎么产生的

从本质上说都是经由原子的能级跃迁产生的。不同的是原子发射光谱研究的是待测元素激发的辐射强度,原子吸收光谱法是研究原子蒸气对光源共振线的吸收强度,是吸收光谱。原子荧光是研究待测元素受激发跃迁所发射的荧光强度,虽激发方式不同,仍属于发射光谱。因为原子荧光光谱法既有原子发射光谱和吸收的特点所以具有二者的优

Agilent原子吸收光谱仪的原子化过程

Agilent原子吸收光谱仪是基于从光源发射的待测元素的特征辐射通过样品蒸气时,被蒸气中待测元素的基态原子所吸收,根据辐射强度的减弱程度以求得样品中待测元素的含量。 通常情况下,原子处于基态。当相当于原子中的电子由基态跃迁到激发态所需要的辐射频率通过原子蒸气,原子就能从入射辐射中吸收能量,产生共振吸

ICP原子发射光谱仪原子化的方法

ICP原子发射光谱仪原子化的方法:原子吸收光谱法采用的原子化方法主要有火焰法、石墨炉法和氢化物发生法。

原子吸收光谱和原子发射光谱的异同

从本质上说都是经由原子的能级跃迁产生的。不同的是原子发射光谱研究的是待测元素激发的辐射强度,原子吸收光谱法是研究原子蒸气对光源共振线的吸收强度,是吸收光谱。原子荧光是研究待测元素受激发跃迁所发射的荧光强度,虽激发方式不同,仍属于发射光谱。因为原子荧光光谱法既有原子发射光谱和吸收的特点所以具有二者的优

怎么利用原子力显微镜测试分析原子层数

孔径kǒngjìng[bore diameter;aperture] 物体表面孔直径pore radius指孔固体孔道形状孔其实极规则通视作圆形其半径表示孔孔径布与吸附剂吸附能力催化剂性关孔半径10nm孔径布用气体吸附测定部孔孔孔径布用压汞测定孔径测量值通用?(10负十米?ngstr?m, 简称埃)

ICP原子发射光谱仪怎么实现原子化?

ICP原子发射光谱仪原子化的方法:原子吸收光谱法采用的原子化方法主要有火焰法、石墨炉法和氢化物发生法。

Agilent原子吸收光谱仪的原子化过程

  Agilent原子吸收光谱仪是基于从光源发射的待测元素的特征辐射通过样品蒸气时,被蒸气中待测元素的基态原子所吸收,根据辐射强度的减弱程度以求得样品中待测元素的含量。   通常情况下,原子处于基态。当相当于原子中的电子由基态跃迁到激发态所需要的辐射频率通过原子蒸气,原子就能从入射辐射中吸收能

原子吸收光谱仪的原子化器系统

原子化器系统:原子化器是将样品中的待测组份转化为基态原子的装置。一,火焰原子化器 火焰原子化法是利用气体燃烧形成的火焰来进行原子化的,实际上就是一个喷雾燃烧器,由三部分组成,即喷雾器、雾化室和燃烧器.  喷雾器:将试样溶液转为雾状。  雾化室:内装撞击球和扰流器(去除大雾滴并使气溶胶均匀)。  燃烧

原子吸收光谱仪电热原子化的特点

原子吸收光谱仪电热原子化时间短,在光路上停留的时间达1s或更长,因此可以提高灵敏度。电热原子化主要用于原子吸收光谱仪和原子荧光光谱仪中,一般不直接用于产生发射光谱。然而,通过电热原子化蒸发引入试样的方法,已开始用于电感耦合等离子体发射光源。   电热原子化法是用精密微量注射器将固定体积的试液放入可被

ICP原子发射光谱仪原子化的过程

  ICP原子发射光谱仪原子化的过程   原子吸收光谱法采用的原子化方法主要有火焰法、石墨炉法和氢化物发生法。   火焰原子化   在这过程中,大致分为两个主要阶段:   (1)从溶液雾化至蒸发为分子蒸气的过程。主要依赖于雾化器的性能、雾滴大小、溶液性质、火焰温度和溶液的浓度等。   (2

原子吸收光谱法采用的原子化进程

原子吸收光谱法采用的原子化方法主要有火焰法、石墨炉法和氢化物发生法。   1.火焰原子化过程大致分为两个主要阶段:(1)从溶液雾化至蒸发为分子蒸气的过程。主要依赖于雾化器的性能、雾滴大小、溶液性质、火焰温度和溶液的浓度等。(2)从分子蒸气至解离成基态原子的过程。主要依赖于被测物形成分子的键能,同时还

原子发射和原子吸收光谱的区别与联系

是两个截然不同的概念。发射光谱就是原子在受激情况下,本身发出的光谱;吸收光谱是指光经过原子时,被原子吸收的光谱;意思是这样的,可能不是很精确。

影响原子吸收光谱原子化效率的因素

原子化效率是决定原子吸收光谱分析灵敏度的一个主要因素,通常,原子化效率fa 用火焰中某元素的自由原子数No与该元素在火焰中的不同形态(原子、离子、化合物、 激发态等)组成的原子总数N的比值定义 fa=No/N 由于不同元素的反应能力不同,在火焰中形成稳定化合物或产生自由原子的速度不同, 即

原子吸收光谱仪的原子化器系统

一,火焰原子化器 火焰原子化法是利用气体燃烧形成的火焰来进行原子化的,实际上就是一个喷雾燃烧器,由三部分组成,即喷雾器、雾化室和燃烧器.  喷雾器:将试样溶液转为雾状。  雾化室:内装撞击球和扰流器(去除大雾滴并使气溶胶均匀)。  燃烧器:产生火焰并使试样蒸发和原子化。    火焰---试样雾滴在火

原子发射和原子吸收光谱的区别与联系

是两个截然不同的概念。发射光谱就是原子在受激情况下,本身发出的光谱;吸收光谱是指光经过原子时,被原子吸收的光谱;

原子吸收光谱和原子发射光谱的异同

从本质上说都是经由原子的能级跃迁产生的。不同的是原子发射光谱研究的是待测元素激发的辐射强度,原子吸收光谱法是研究原子蒸气对光源共振线的吸收强度,是吸收光谱。原子荧光是研究待测元素受激发跃迁所发射的荧光强度,虽激发方式不同,仍属于发射光谱。因为原子荧光光谱法既有原子发射光谱和吸收的特点所以具有二者的优