气相色谱仪氮磷检测器概述(一)
氮磷检测器(NPD)又称热离子化检测器、热离子发射检测器或碱火焰电离检测器等,对氮和磷化合物的检测灵敏度高,选择性强,线性范围宽。目前NPD已成为测定含氮化合物zui理想的气相色谱仪检测器,对含磷化合物的灵敏度也高于FPD。由于NPD专一性强,可用于复杂样品直接进样分析,避免麻烦耗时的样品前处理,大大简化分析方法。一、结构:NPD与FID结构相似,两者的差异是NPD在喷嘴与收集极之间有一个热电离源,热电离源通常采用涂有碱金属盐的陶瓷珠(早期NPD的电离源是小球状,目前不限于小球状)。当样品蒸气和氢气流通过碱金属盐表面时,含氮和磷化合物会从碱金属蒸气上获得电子,失去电子的碱金属形成盐再沉积到陶瓷珠表面。1964年最初研制的钠火焰电离检测器,对含磷和卤素化合物有选择性响应。以后又有多种形式,均是用氢火焰加热挥发性的碱金属盐,产生碱金属蒸气,对含氮、磷、卤素化合物均有极高的灵敏度和选择性。遗憾的是其背景信号和样品信号均不稳定,噪声大,......阅读全文
气相色谱仪氮磷检测器概述(一)
氮磷检测器(NPD)又称热离子化检测器、热离子发射检测器或碱火焰电离检测器等,对氮和磷化合物的检测灵敏度高,选择性强,线性范围宽。目前NPD已成为测定含氮化合物zui理想的气相色谱仪检测器,对含磷化合物的灵敏度也高于FPD。由于NPD专一性强,可用于复杂样品直接进样分析,避免麻烦耗时的样品前处理,大
气相色谱仪氮磷检测器概述(二)
三、特点: 1、优点:(1)对含氮和磷化合物的检测灵敏度高,选择性强,线性范围宽。目前已成为测定含氮化合物zui理想的GC检测器,对含磷化合物的灵敏度也高于FPD。(2)由于NPD专一性强,可用于复杂样品直接进样分析,避免麻烦耗时的样品前处理,大大简化分析方法。 2、缺点: NP
气相色谱仪的氮磷检测器概述
气相色谱仪的氮磷检测器(NPD)又称热离子化检侧器(TID),是一种质量型检测器,对含氮、磷化合物的检测灵敏度高,选择性强,线性范围宽,目前已成为测定含氮化合物最理想的气相色谱检测器,对含磷化合物的灵敏度也高于FPD。由于NPD专一性强,可用于复杂样品直接进样分析,避免麻烦耗时的样品前处理,大大简化
气相色谱仪的氮磷检测器简介
气相色谱仪的氮磷检测器(NPD)又称热离子检测器、热离子发射检测器和碱火焰电离检测器等,对氮、磷化合物的检测灵敏度高,选择性强,线性范围宽。目前已成为测定含氮化合物最理想的气相色谱检测器,对含磷化合物的灵敏度也高于FPD。一、结构:NPD与FID结构相似,两者的差异是NPD在喷口与收集极之间有一个电
气相色谱仪的氮磷检测器的介绍
是一种质量检测器,适用于分析氮,磷化合物的高灵敏度、高选择性检测器。它具有与FID相似的结构,只是将一种涂有碱金属盐如Na2SiO3,Rb2SiO3类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当试样蒸气和氢气流通过碱金属盐表面时,含氮、磷的化合物便会从被还原的碱金属蒸气上获得电子,失去电子
气相色谱仪检测器概述(一)
理想的气相色谱仪检测器应能瞬间真实地反映色谱柱流出的载气中组分的存在及其量的快速变化。一、希望在无组分流出即仅有载气通过检测器时,其响应信号曲线(基线)是稳定而无波动的,于是有噪声和漂移的要求。二、希望痕量组分进入检测器就有响应,于是有灵敏度和检测下限的要求。三、希望在某些情况下对所有进入检测器的组
气相色谱仪氮磷检测器检测条件的选择
气相色谱仪氮磷检测器检测条件的选择包括加热电流、载气流速、氢气流速和空气流速等选择。一、加热电流:基流和响应值均随加热电流的增加而增大。实际操作时,可用基流为标记来调节加热电流的大小。调节基流的原则是在达到检测下限的前提下,宁小勿大。如已满足分析要求,仍加大加热电流,即使检测下限还可下降,但已意义不
气相色谱仪的氮磷检测器的工作原理
是在NPD检测器的喷口上方, 有一个被大电流加热的铷珠, 碱金属盐( 铷珠) 受热而逸出少量离子, 铷珠上加有-250V 极化电压, 与圆筒形收集极形成直流电场,逸出的少量离子在直流电场作用下定向移动,形成微小电流被收集极收集,即为基流。当含氮或磷的有机化合物从色谱柱流出, 在铷珠的周围产生热离
气相色谱仪氮磷检测器使用注意事项
为了使气相色谱仪氮磷检测器保持性能zui优,预防损坏和出现事故,使用中需注意以下四方面事项:一、电离源的维护:1、电离源老化时,切勿将色谱柱连至检测器。可将色谱柱卸下后用螺丝将检测器入口密封,通氢气和空气老化。2、开加热电源后,应逐渐升高加热电流,切勿突然用大电流加热电离源。3、只要氢气流速能满足灵
氮磷检测器概述
氮磷检测器( nitrogen phosphorus detector,NPD)是一种质量检测器,适用于分析氮,磷化合物的高灵敏度、高选择性检测器。它具有与FID相似的结构,只是将一种涂有碱金属盐如Na2SiO3,Rb2SiO3类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当试样蒸气和氢气流
决定气相色谱仪氮磷检测器响应特性的因素
决定气相色谱仪氮磷检测器响应特性的因素有电离源表面的功函数、电离源表面的温度和电离源表面周围气体层的成分。一、电离源表面的功函数:电离源表面的功函数是指从电离源表面除去一个电子所需要能量的大小。由电离源的化学组成决定。二、电离源表面的温度:由加热电流大小决定。三、电离源表面周围气体层的成分:由进入检
气相色谱仪的氮磷检测器的应用领域
氮磷检测器的使用寿命长、灵敏度极高,可以检测到5×10-13g/s偶氮苯类含氮化合物,2.5×10-13g/s的含磷化合物,如马拉松农药。它对氮、磷化合物有较高的响应。而对其他化合物有的响应值低10000~100000倍。氮磷检测器被广泛应用于农药、石油、食品、药物、香料及临床医学等多个领域。
决定高效气相色谱仪氮磷检测器响应特性的因素
决定高效气相色谱仪氮磷检测器响应特性的因素有电离源表面的功函数、电离源表面的温度和电离源表面周围气体层的成分。一、电离源表面的功函数:电离源表面的功函数是指从电离源表面除去一个电子所需要能量的大小。由电离源的化学组成决定。二、电离源表面的温度:由加热电流大小决定。三、电离源表面周围气体层的成分:由进
高效气相色谱仪氮磷检测器如何延长使用寿命
高效气相色谱仪氮磷检测器的主要缺点是随着使用时间增长,性能变差,最后响应极小,必须换新电离源。 为了达到要求的响应值,可提高NPD加热电流,但使用一段时间后,响应值又逐渐降低,须再提高其加热电流,如此多次提高加热电流,以保持NPD的正常工作。响应值下降的一般规律是:使用
气相色谱仪检测器概述
气相色谱仪检测器是将气相色谱仪色谱柱流出载气中被分离组分的浓度(或物质量)变化转化为电信号(电压或电流)变化的装置。一、检测器按专属性可分:1、通用型检测器:通用型检测器是对所有溶质或含有溶质的柱流出物都有响应的检测器。如 TCD 等。通用型检测器容易受共存非被测组分的干扰。所谓通用只是相对的,不可
气相色谱仪磷检测器工作原理
气相色谱仪磷检测器的喷嘴接地为正电位,氢流量与通常FID相近,喷嘴处能形成正常火焰,此火焰与电同时加热电离源至暗红,这时含磷化合物灵敏度增加,而烃类峰全部消失,为磷专一型。此专一性来自电离源是负电位。烃类在火焰中燃烧产生的电子不能越过电离源负电位的位垒,在电离源和喷嘴之间电场的作用下,流向喷嘴入地。
气相色谱仪的氮磷检测器与碱火焰电离检测器的区别
气相色谱仪的氮磷检测器(NPD)是由碱火焰电离检测器(AFID)发展而来。两者区别如下:一、热电离源:1、NPD:非挥发性的硅酸铷玻璃珠。2、AFID:挥发性的碱金属盐。二、加热方式:1、NPD:硅酸铷玻璃珠熔融在一根螺旋铂丝上用电加热,氢气流仅几毫升/分钟,为冷氢焰加热。2、AFID:热氢焰加热。
气相色谱氮磷检测器的使用与维护
氮磷检测器(NPD)是分析微量含氮有机污染物的常用手段。关于NPD使用与维护的文献不多,不同厂家的NPD结构性能也有差异,本文以岛津色谱仪的氮磷检测器为例,依据作者使用经验,分析介绍NPD使用维护的一些问题。1 NPD的铷珠1.1 铷珠老化老化过程也是铷珠损耗过程,尽量减少高温阶段老化的时间,可以减
高效气相色谱仪的氮磷检测器与碱火焰电离检测器的区别
高效气相色谱仪的氮磷检测器(NPD)是由碱火焰电离检测器(AFID)发展而来。两者区别如下:一、热电离源:1、NPD:非挥发性的硅酸铷玻璃珠。2、AFID:挥发性的碱金属盐。二、加热方式:1、NPD:硅酸铷玻璃珠熔融在一根螺旋铂丝上用电加热,氢气流仅几毫升/分钟,为冷氢焰加热。2、AFID:热氢焰加
高效气相色谱仪磷检测器工作原理
高效气相色谱仪磷检测器的喷嘴接地为正电位,氢流量与通常FID相近,喷嘴处能形成正常火焰,此火焰与电同时加热电离源至暗红,这时含磷化合物灵敏度增加,而烃类峰全部消失,为磷专一型。此专一性来自电离源是负电位。烃类在火焰中燃烧产生的电子不能越过电离源负电位的位垒,在电离源和喷嘴之间电场的作用下,流向喷嘴入
气相色谱仪检测器概述(五)
第五节 氮磷检测器 氮磷检测器(NPD)又称热离子化检测器、热离子发射检测器或碱火焰电离检测器等,对氮和磷化合物的检测灵敏度高,选择性强,线性范围宽。目前NPD已成为测定含氮化合物zui理想的,对含磷化合物的灵敏度也高于FPD。由于NPD专一性强,可用于复杂样品直接进样分析,避免麻烦耗时的样品前处理
气相色谱仪检测器概述(三)
5、程序升温时调整基线漂移为最小:对于双气路GC,将参考气路和测量气路的流量调至相等,通常作恒温分析时,基线很正常。但在程序升温分析时,可能基线漂移较大。这时,为使基线漂移最小可作如下调整:(1)将参考气路和测量气路的流量调至相等。(2)程序升温至最高温度后保持一段时间,同时记录基线漂移。(3)调整
气相色谱仪检测器概述(六)
第六节 火焰光度检测器 火焰光度检测器(FPD)是一种灵敏度高和选择性高的,对P的响应为线性,对S的响应为非线性。以前一直将FPD作为含S 和P化合物的专用检测器,后来由于NPD对P检测的灵敏度高于FPD,而且更可靠。因此,FPD现在多只作为含S化合物的专用检测器。一、结构:FPD由氢火焰部分和光度
气相色谱仪检测器概述(四)
6、极化电压:极化电压的大小影响检测器的灵敏度。当极化电压较低时,离子化信号随极化电压的增加而迅速增大。当电压超过一定的值时,增加电压对离子化电流的增大没有明显影响。正常操作时,极化电压一般为150~300V。7、电极形状和电极距离:有机物在氢火焰中的离子化效率很低,要求收集极的表面积必须足够大,以
气相色谱仪检测器概述(二)
(4)结构形式:有双臂热导池和四臂热导池。只通纯载气的孔道称为参考池,通载气和样品的孔道称为测量池。1)双臂热导池:双臂热导池池体具有两个大小和形状完全对称的孔道,每一孔道中装有一根铼钨丝,每根铼钨丝的形状和电阻值在相同的温度下基本相同。双臂热导池的一臂为参考池,另一臂为测量池。2)四臂热导池:四臂
气相色谱仪检测器概述(七)
第七节 原子发射检测器 微波诱导等离子体原子发射检测器气相色谱仪(GC-MIP-AED)由气相色谱仪、原子发射检测器(又称原子发射光谱仪)、气相色谱仪与原子发射检测器之间的接口和数据数据处理系统等组成。原子发射检测器是近年飞速发展起来的多元素检测器,应用领域在不断扩大,是一种十分有发展前景的气相色谱
高效气相色谱仪检测器概述
被测组分经高效气相色谱仪色谱柱分离后是以气态分子与载气分子相混合状态从色谱柱流出的,人的肉眼看不见,必须要有一个方法将混合气体中组分的真实浓度变成可测量的电信号,而且信号大小与组分的量要成正比。气相色谱仪检测器的作用就是连续检测经色谱柱分离后的流出物的组成和含量变化,并将这种变化转变成电信号。一、检
气相色谱仪氮磷检测器的稳定性和使用寿命
气相色谱仪氮磷检测器的主要缺点是随着使用时间增长,性能变差,zui后响应极小,必须换新电离源。为了达到要求的响应值,可提高NPD加热电流,但使用一段时间后,响应值又逐渐降低,须再提高其加热电流,如此多次提高加热电流,以保持NPD的正常工作。响应值下降的一般规律是:使用初期下降速度快,后期下降速度慢。
气相色谱仪氮磷检测器的稳定性和使用寿命
气相色谱仪氮磷检测器的主要缺点是随着使用时间增长,性能变差,zui后响应极小,必须换新电离源。 为了达到要求的响应值,可提高NPD加热电流,但使用一段时间后,响应值又逐渐降低,须再提高其加热电流,如此多次提高加热电流,以保持NPD的正常工作。响应值下降的一般规律是:使用初期下降速度快,
气相色谱仪原子发射检测器概述
微波诱导等离子体原子发射检测器气相色谱仪(GC-MIP-AED)由气相色谱仪、原子发射检测器(又称原子发射光谱仪)、气相色谱仪与原子发射检测器之间的接口和数据数据处理系统等组成。原子发射检测器是近年飞速发展起来的多元素检测器,应用领域在不断扩大,是一种十分有发展前景的气相色谱检测器。 原子发射检测器