毛细管等速电泳色谱仪工作原理

毛细管等速电泳色谱仪(CITP)是采用先导电解质和尾随电解质,利用待测离子淌度的不同进行分离,区带界面明显,具有富集和浓缩作用。CITP采用两种不同浓度的电解质。一种为前导电解质,淌度比样品中任何离子的淌度都大并具有一定缓冲能力,充满整个毛细管,并加入到毛细管末端的电解槽中。另一种为尾随电解质,淌度比样品中任何离子的淌度都小并具有一定缓冲能力,加入到毛细管起始端的电解槽中。样品加在先导电解质和尾随电解质之间,系统中加入对离子以满足电中性的要求。利用待测离子淌度的不同进行分离,达到平衡时,各离子区带上电场强度的自调节作用使各离子区带具有相同的迁移速度,逐渐形成各自独立的区带而达到分离。不同离子的淌度不同,所形成区带的电场强度不同,淌度大的离子区带的电场强度小。沿出口到进口,将不同区带依次排序为1、2、3…,电场强度依次增大。假设2号区带中的离子扩散到3号区带,3号区带的电场强度大,离子被加速使之返回到2号区带。假设2号区带中的离......阅读全文

液相色谱仪的工作原理

液相色谱仪工作原理:系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附-解吸的分配过程,各组分在移动速度

生物亲和色谱仪工作原理

生物亲和色谱仪是利用生物大分子和固定相表面存在某种特异性亲和力进行选择性分离的。通常在载体(无机和有机填料)表面键合一种具有一般反应性能的间隔臂(如环氧和联氨等),再连接上配基(酶、抗原和激素等)。这种固载化的配基将只能和具有亲和力特性吸附的生物大分子相互作用而被保留,没有这种作用的分子不被保留。生

生物亲和色谱仪工作原理

生物亲和色谱仪是利用生物大分子和固定相表面存在某种特异性亲和力进行选择性分离的。通常在载体(无机和有机填料)表面键合一种具有一般反应性能的间隔臂(如环氧和联氨等),再连接上配基(酶、抗原和激素等)。这种固载化的配基将只能和具有亲和力特性吸附的生物大分子相互作用而被保留,没有这种作用的分子不被保留。生

高效液相色谱仪工作原理

高效液相色谱仪原理:   在条件(流动相、固定相、温度和压力等)一定,样品浓度很低时(Cs、Cm很小)时,K只取决于组分的性质,而与浓度无关。这只是理想状态下的色谱条件,在这种条件下,得到的色谱峰为正常峰;在许多情况下,随着浓度的增大,K减小,这时色谱峰为拖尾峰;而有时随着溶质浓度增大,K也增大,这

液相色谱仪的工作原理

液相色谱仪工作原理:系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附-解吸的分配过程,各组分在移动速度

液相色谱仪的工作原理

  系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别

气相色谱仪工作原理

气相色谱仪由气路系统、进样系统、分离系统、温控系统、检测系统和数据处理系统等组成,是利用样品各组分在固定相和流动相中溶解、分配或吸附等性能的差异,使各组分在作相对运动的两相中反复多次受到上述各作用而达到相互分离,具有高效、高选择性、高灵敏度、分析速度快和应用范围广等特点。根据气相色谱仪色谱图可以进行

气相色谱仪工作原理

气相色谱仪工作原理利用试样中各组份在气相和固定液液相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配。由于固定相对各组份的吸附或溶解能力不同,因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器,产生的离子流讯号

液相色谱仪的工作原理

系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别,被

气象色谱仪的工作原理

  原理是混合气体中的各种成分通过色谱柱的速度不同。分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。它是带状光谱,反映了分子中某些基团的信息。可以用标准光谱图再结合其它手段进行定性分析。  根据Lambert-Beer定律:A=εbc,(A为吸

毛细管电泳色谱仪分离分析模式

毛细管电泳色谱仪(CE)是以毛细管为分离通道,以高压直流电场为驱动力,利用荷电粒子之间的淌度差异和分配系数差异进行分离,是分析科学继液相色谱仪之后的又一重大进展,使分析科学从微升级进入到了纳升级水平,正成为生物样品zui重要的分离分析手段。CE分离分析模式有毛细管电色谱、毛细管区带电泳、毛细管胶束电

毛细管电泳色谱仪性能特点归纳

毛细管电泳色谱仪(CE)是以毛细管为分离通道,以高压直流电场为驱动力,利用荷电粒子之间的淌度差异和分配系数差异进行分离,是分析科学继液相色谱仪之后的又一重大进展,使分析科学从微升级进入到了纳升级水平,不仅使单细胞乃至单分子分析成为可能,也使蛋白质和核酸等生物大分子分析有了新的转机。CE分离模式有毛细

毛细管电泳色谱仪特点归纳

毛细管电泳色谱仪(CE)是以毛细管为分离通道,以高压直流电场为驱动力,利用荷电粒子之间的淌度差异和分配系数差异进行分离,是分析科学继液相色谱仪之后的又一重大进展,使分析科学从微升级进入到了纳升级水平,不仅使单细胞乃至单分子分析成为可能,也使蛋白质和核酸等生物大分子分析有了新的转机。CE分离模式有毛细

高效毛细管电泳色谱仪性能特点归纳

  高效毛细管电泳色谱仪(CE)是以毛细管为分离通道,以高压直流电场为驱动力,利用荷电粒子之间的淌度差异和分配系数差异进行分离,是分析科学继高效液相色谱仪之后的又一重大进展,使分析科学从微升级进入到了纳升级水平,不仅使单细胞乃至单分子分析成为可能,也使蛋白质和核酸等生物大分子分析有了新的转机。  C

毛细管电泳色谱仪分离类型

毛细管电泳色谱仪分离类型有电泳型、色谱型、联用型和其它型。一、电泳型:1、毛细管区带电泳:毛细管内只填充pH缓冲液。2、毛细管凝胶电泳:毛细管内填充聚丙烯酰胺等凝胶。3、毛细管等电聚焦电泳:毛细管内填充pH梯度介质。4、毛细管等速电泳:通常采用不连续(自由溶液)电泳介质。二、色谱型:1、填充毛细管电

高效毛细管电泳色谱仪分析的样品预浓缩方法

   高效毛细管电泳色谱仪(CE)分析的样品预浓缩方法有堆积进样、电场聚焦进样、等速电泳进样、固相萃取、液液分配色谱、中空纤维液相微萃取、吸附色谱和亲和色谱等。一、堆积进样:  1、原理:        根据样品塞子与CE缓冲液的导电性差异来实现。若样品的导电性小于CE缓冲液,样品塞子上的电场强度高

毛细管电泳色谱仪分析的样品预浓缩方法

毛细管电泳色谱仪(CE)分析的样品预浓缩方法有堆积进样、电场聚焦进样、等速电泳进样、固相萃取、液液分配色谱、中空纤维液相微萃取、吸附色谱和亲和色谱等。一、堆积进样:1、原理:根据样品塞子与CE缓冲液的导电性差异来实现。若样品的导电性小于CE缓冲液,样品塞子上的电场强度高于缓冲液,样品塞子中离子的迁移

毛细管电泳工作原理(capillary-electrophoresis,-CE)(一)

  毛细管电泳(capillary electrophoresis, CE)又叫高效毛细管电泳(HPCE), 是近年来发展最快的分析方法之一。1981年Jorgenson和Lukacs首先提出在75μm内径毛细管柱内用高电压进行分离, 创立了现代毛细管电泳。1984年Terabe等建立了胶束毛细管电

毛细管电泳工作原理(capillary-electrophoresis,-CE)(二)

CE现有六种分离模式,分述如下:   1. 毛细管区带电泳(capillary zone electrophoresis, CZE), 又称毛细管自由电泳, 是CE中最基本、应用最普遍的一种模式。前述基本原理即是CZE的基本原理。   2. 胶束电动毛细管色谱 (micellar electroki

毛细管电泳色谱仪与质谱仪联用中的样品预浓缩

毛细管电泳色谱仪(CE)是以毛细管为分离通道,以高压直流电场为驱动力,利用荷电粒子之间的淌度差异和分配系数差异进行分离,具有、分辨率高、重复性好、速度快和易于自动化等优点。质谱仪(MS)是通过对样品离子的质量和强度的测定进行定量和结构分析,具有灵敏度高和速度快等优点。CE与MS联用综合了两者的优点,

等速电泳的技术特点

是在样品中加有领先离子(其迁移率比所有被分离离子的大)和终末离子(其迁移率比所有被分离离子的小),样品加在领先离子和终末离子之间,在外电场作用下,各离子进行移动,经过一段时间电泳后,达到完全分离。被分离的各离子的区带按迁移率大小依序排列在领先离子与终末离子的区带之间。由于没有加入适当的支持电解质来载

等速电泳的技术特点

等速电泳可以进行多种离子的同时分析,样品前处理简单或不需要,操作条件容易根据需要改变,所以等速电泳特别适用于生化分析工作。

液相色谱仪使用及工作原理

液相色谱仪是利用混合物在液-固或不互溶的两种液体之间分配比的差异,对混合物进行先分离,而后分析鉴定的仪器。广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。高效液相色谱仪与结构仪器的联用是一个重要的发展方向。液相色谱仪工作原理:统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部

离子色谱仪的工作原理

离子色谱仪的工作原理:基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。适用于亲水性阴、阳离子的分离。工作过程: 输液泵将流动相以稳定的流速( 或压力) 输送至分析体系, 在色谱柱之前通过进样器将样品导入, 流动相将样品带入色谱

离子色谱仪的工作原理

离子色谱仪的工作原理:基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。适用于亲水性阴、阳离子的分离。工作过程: 输液泵将流动相以稳定的流速( 或压力) 输送至分析体系, 在色谱柱之前通过进样器将样品导入, 流动相将样品带入色谱

液相色谱仪使用及工作原理

液相色谱仪是利用混合物在液-固或不互溶的两种液体之间分配比的差异,对混合物进行先分离,而后分析鉴定的仪器。广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。高效液相色谱仪与结构仪器的联用是一个重要的发展方向。液相色谱仪工作原理:统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部

液相色谱仪使用及工作原理

液相色谱仪是利用混合物在液-固或不互溶的两种液体之间分配比的差异,对混合物进行先分离,而后分析鉴定的仪器。广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。高效液相色谱仪与结构仪器的联用是一个重要的发展方向。液相色谱仪工作原理:统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部

气相色谱仪的工作原理

气相色谱工作原理:利用试样中各组份在气相和固定液体相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同, 因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器,产生的离子流讯

液相色谱仪使用及工作原理

液相色谱仪是利用混合物在液-固或不互溶的两种液体之间分配比的差异,对混合物进行先分离,而后分析鉴定的仪器。广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。高效液相色谱仪与结构仪器的联用是一个重要的发展方向。液相色谱仪工作原理:统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部

液相色谱仪的工作原理简介

  系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别