Antpedia LOGO WIKI资讯

传统光学显微镜与近场光学显微镜

近场光学显微镜是对于常规光学显微镜的革命。它不用光学透镜成像,而用探针的针尖在样品表面上方扫描获得样品表面的信息。分析了传统光学显微镜与近场光学显微镜成像原理的物理本质和两种显微镜系统结构的异同点。介绍了光纤探针的制作方法。重点讨论了近场探测原理、光学隧道效应及非辐射场的性质。 传统光学显微镜是显微镜家族里最年长的成员,迄今已有几百年的历史。它曾经是观测微小结构的唯一手段。传统的光学显微镜以光学透镜为主体,利用透镜将物体放大或成像。一般地讲,单个透镜能将物体放大几十倍,使用透镜组合几乎可放大到近千倍。光的衍射效应限制了光学显微镜进一步提高分辨力的可能性。这就是瑞利分辨力极限。 1982年,瑞士苏黎世IBM的G.Binning和H.Rohrer[1]等发明了扫描隧道显微镜(STM),极大地提高了观测灵敏度,其横向分辨力达到0.01nm,纵向分辨力为0.001nm,比传统的电子显微镜提高......阅读全文

近场光学显微镜的近场光学显微镜原理

传统的光学显微镜由光学镜头组成,可以将物体放大至几千倍来观察细节,由于光波的衍射效应,无限提高放大倍数是不可能的,因为会遇到光波衍射极限这一障碍,传统的光学显微镜的分辨率不能超过光波长的一半。比如,以波长λ=400nm的绿光作为光源,仅能分辨相距为200nm的两个物体。实际应用中λ>400nm,分辨

传统光学显微镜与近场光学显微镜

      近场光学显微镜是对于常规光学显微镜的革命。它不用光学透镜成像,而用探针的针尖在样品表面上方扫描获得样品表面的信息。分析了传统光学显微镜与近场光学显微镜成像原理的物理本质和两种显微镜系统结构的异同点。介绍了光纤探针的制作方法。重点讨论了近场探测原理、光学隧道效应及非辐射场的性质。  传统光

近场光学显微镜的近场光学显微镜的组成部分

由于光子的特性,近场光学显微镜在生物研究中具有许多优点:(1)超越光学衍射极限的分辨率,甚至可达到亚纳米量级;(2)光学显微技术,无侵入性,可在生物的自然状态环境下进行观测研究;(3)能够观测吸收、 反射、 荧光、 偏振对比度,透视生物样品内部光学性质;(4)光谱学分析,对化学状态具有高分辨率;(5

近场光学显微镜原理

传统的光学显微镜由光学镜头组成,可以将物体放大至几千倍来观察细节,由于光波的衍射效应,无限提高放大倍数是不可能的,因为会遇到光波衍射极限这一障碍,传统的光学显微镜的分辨率不能超过光波长的一半。比如,以波长λ=400nm的绿光作为光源,仅能分辨相距为200nm的两个物体。实际应用中λ>400nm,分辨

近场光学的近场光学显微镜的基本类型

      近场光学显微镜 的主要目标是获得与物体表面相距小于波长K的近场信息, 即隐失场的探测。虽然已经出现了许多不同类型的近场光学显微仪器, 但它们有一些共同的结构。如同其他扫描探针显微镜( STM、AFM…), 近场光学显微镜包括: ( 1)探针,(2) 信号采集及处理,(3)探针-样品间距

散射式近场光学显微镜

      散射式近场光学显微镜NeaSNOM,具有如下的特点:独有的极高空间分辨率10nm;可适用于可见、红外和太赫兹光谱范围;近场振幅和相位分辨测量功能;纳米尺度下,用于FTIR吸收光谱研究;极高的分辨率下,研究有机或无机样品,整个操作仅需要常规的AFM样品准备过程。因此,推动了等离激元研究、

近场光学显微镜的背景

传统光学显微镜(即远场光学显微镜)是显微镜家族中年代最久远的成员,它曾是观测微小结构的唯一手段。传统光学显微镜由光学透镜组成,利用折射率变化和透镜的曲率变化,将被观察的物体放大,来获得其细节信息。然而,光的衍射极限限制了光学显微镜分辨力的进一步提高。由瑞利分辨力极限可知,光学显微镜的放大倍数是不能任

什么是近场光学显微镜?

近场光学显微镜(MO-SNOM)是扫描近场光学显微镜的一种形式。一种扫描近场光学显微镜(SMOM),用于可视化样品表面的形状和磁通量分布。用于分析磁性材料中磁光效应引起的光的偏振度的光学系统已添加到透射SNOM中。入射的激光束通过声光调制器(AOM)以15 kHz的频率闪烁,然后用偏振器线性偏振,然

近场光学显微镜 原理及应用

     近场光学显微镜(英文名:SNOM)是根据非辐射场的探测与成像原理,能够突破普通光学显微镜所受到的衍射极限,采用亚波长尺度的探针在距离样品表面几个纳米的近场范围进行扫描成像的技术,在近场观测范围内,在样品上进行扫描而同时得到分辨率高于衍射极限的形貌像和光学像的显微镜。   近场光学显微镜适用

扫描近场光学显微镜概述及应用

扫描近场光学显微镜(SNOM——ScanningNear-fieldOeticalMicr0SCOPP)是依据近场探测原理发展起来的一种光学扫描探针显微(SPM)技术。其分辨率突破光学衍射极限,达到10~.200。m。在技术应用上.SNOM为单分子探测,生物结构、纳米微结构的研究,半导体外陷分析及z